Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Ultramicroscopy ; 184(Pt A): 242-251, 2018 01.
Article in English | MEDLINE | ID: mdl-28992558

ABSTRACT

The use of a direct electron detector for the simple acquisition of 2D electron backscatter diffraction (EBSD) maps and 3D EBSD datasets with a static sample geometry has been demonstrated in a focused ion beam scanning electron microscope. The small size and flexible connection of the Medipix direct electron detector enabled the mounting of sample and detector on the same stage at the short working distance required for the FIB. Comparison of 3D EBSD datasets acquired by this means and with conventional phosphor based EBSD detectors requiring sample movement showed that the former method with a static sample gave improved slice registration. However, for this sample detector configuration, significant heating by the detector caused sample drift. This drift and ion beam reheating both necessitated the use of fiducial marks to maintain stability during data acquisition.

2.
Sci Rep ; 7(1): 10916, 2017 09 07.
Article in English | MEDLINE | ID: mdl-28883500

ABSTRACT

Advanced structural characterisation techniques which are rapid to use, non-destructive and structurally definitive on the nanoscale are in demand, especially for a detailed understanding of extended-defects and their influence on the properties of materials. We have applied the electron backscatter diffraction (EBSD) technique in a scanning electron microscope to non-destructively characterise and quantify antiphase domains (APDs) in GaP thin films grown on different (001) Si substrates with different offcuts. We were able to image and quantify APDs by relating the asymmetrical intensity distributions observed in the EBSD patterns acquired experimentally and comparing the same with the dynamical electron diffraction simulations. Additionally mean angular error maps were also plotted using automated cross-correlation based approaches to image APDs. Samples grown on substrates with a 4° offcut from the [110] do not show any APDs, whereas samples grown on the exactly oriented substrates contain APDs. The procedures described in our work can be adopted for characterising a wide range of other material systems possessing non-centrosymmetric point groups.

3.
J Microsc ; 267(3): 330-346, 2017 09.
Article in English | MEDLINE | ID: mdl-28474742

ABSTRACT

We analyse the signal formation process for scanning electron microscopic imaging applications on crystalline specimens. In accordance with previous investigations, we find nontrivial effects of incident beam diffraction on the backscattered electron distribution in energy and momentum. Specifically, incident beam diffraction causes angular changes of the backscattered electron distribution which we identify as the dominant mechanism underlying pseudocolour orientation imaging using multiple, angle-resolving detectors. Consequently, diffraction effects of the incident beam and their impact on the subsequent coherent and incoherent electron transport need to be taken into account for an in-depth theoretical modelling of the energy- and momentum distribution of electrons backscattered from crystalline sample regions. Our findings have implications for the level of theoretical detail that can be necessary for the interpretation of complex imaging modalities such as electron channelling contrast imaging (ECCI) of defects in crystals. If the solid angle of detection is limited to specific regions of the backscattered electron momentum distribution, the image contrast that is observed in ECCI and similar applications can be strongly affected by incident beam diffraction and topographic effects from the sample surface. As an application, we demonstrate characteristic changes in the resulting images if different properties of the backscattered electron distribution are used for the analysis of a GaN thin film sample containing dislocations.


Subject(s)
Electrons , Microscopy, Electron, Scanning/methods , Models, Theoretical
SELECTION OF CITATIONS
SEARCH DETAIL
...