Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
Add more filters










Publication year range
1.
J Vasc Res ; 60(5-6): 273-282, 2023.
Article in English | MEDLINE | ID: mdl-37980887

ABSTRACT

INTRODUCTION: Cerebral blood flow (CBF) is reduced in patients with Alzheimer's disease (AD). Flow-mediated dilation (FMD), which plays a key role in the regulation of blood flow, is attenuated by endothelin-1. We hypothesized that endothelin receptor blockade may improve CBF in AD. METHODS: We investigated cerebrovascular reactivity in a mouse model of AD (APP-PS1; 5-6-month-old male subjects). We assessed the in vivo response to normoxic hypercapnia and in vitro FMD in isolated cerebral and mesenteric resistance arteries before and after endothelin receptor blockade (bosentan). RESULTS: Normoxic hypercapnia increased basilar trunk blood flow velocity (+12.3 ± 2.4%; p = 0.006, n = 6) in wild-type (WT) mice but reduced blood flow in APP-PS1 mice (-11.4 ± 1.2%; p < 0.0001, n = 8). Bosentan (50 mg/kg, acute intraperitoneal injection) restored cerebrovascular reactivity in APP-PS1 mice (+10.2 ± 2.2%; p < 0.0001, n = 8) but had no effect in WT. FMD was reduced in the posterior cerebral artery of APP-PS1 compared to WT and was normalized by bosentan (1 µmol/L, 30 min, or 50 mg/kg/day for 28 days). FMD was similar in the mesenteric artery of APPS-PS1 and WT. CONCLUSION: APP-PS1 mice exhibited cerebrovascular endothelial dysfunction. Acute and chronic blockade of endothelin receptors restored endothelial vasomotor function, suggesting a promising therapeutic approach to restoring cerebral vasoreactivity in AD.


Subject(s)
Alzheimer Disease , Humans , Male , Mice , Animals , Infant , Alzheimer Disease/drug therapy , Bosentan , Receptors, Endothelin , Dilatation , Hypercapnia , Disease Models, Animal , Cerebrovascular Circulation , Mice, Transgenic , Endothelin-1
3.
Cell Mol Life Sci ; 80(8): 210, 2023 Jul 18.
Article in English | MEDLINE | ID: mdl-37460898

ABSTRACT

Dysregulated autophagy is associated with cardiovascular and metabolic diseases, where impaired flow-mediated endothelial cell responses promote cardiovascular risk. The mechanism by which the autophagy machinery regulates endothelial functions is complex. We applied multi-omics approaches and in vitro and in vivo functional assays to decipher the diverse roles of autophagy in endothelial cells. We demonstrate that autophagy regulates VEGF-dependent VEGFR signaling and VEGFR-mediated and flow-mediated eNOS activation. Endothelial ATG5 deficiency in vivo results in selective loss of flow-induced vasodilation in mesenteric arteries and kidneys and increased cerebral and renal vascular resistance in vivo. We found a crucial pathophysiological role for autophagy in endothelial cells in flow-mediated outward arterial remodeling, prevention of neointima formation following wire injury, and recovery after myocardial infarction. Together, these findings unravel a fundamental role of autophagy in endothelial function, linking cell proteostasis to mechanosensing.


Subject(s)
Endothelial Cells , Myocardial Infarction , Humans , Autophagy , Autophagy-Related Protein 5/genetics , Autophagy-Related Protein 5/metabolism , Endothelial Cells/metabolism , Endothelium, Vascular/metabolism , Mesenteric Arteries/metabolism , Myocardial Infarction/metabolism , Nitric Oxide Synthase Type III/metabolism , Signal Transduction , Vasodilation , Animals , Mice
4.
Mar Drugs ; 21(3)2023 Mar 22.
Article in English | MEDLINE | ID: mdl-36976245

ABSTRACT

Tetrodotoxin (TTX) poisoning through the consumption of contaminated fish leads to lethal symptoms, including severe hypotension. This TTX-induced hypotension is likely due to the downfall of peripheral arterial resistance through direct or indirect effects on adrenergic signaling. TTX is a high-affinity blocker of voltage-gated Na+ (NaV) channels. In arteries, NaV channels are expressed in sympathetic nerve endings, both in the intima and media. In this present work, we aimed to decipher the role of NaV channels in vascular tone using TTX. We first characterized the expression of NaV channels in the aorta, a model of conduction arteries, and in mesenteric arteries (MA), a model of resistance arteries, in C57Bl/6J mice, by Western blot, immunochemistry, and absolute RT-qPCR. Our data showed that these channels are expressed in both endothelium and media of aorta and MA, in which scn2a and scn1b were the most abundant transcripts, suggesting that murine vascular NaV channels consist of NaV1.2 channel subtype with NaVß1 auxiliary subunit. Using myography, we showed that TTX (1 µM) induced complete vasorelaxation in MA in the presence of veratridine and cocktails of antagonists (prazosin and atropine with or without suramin) that suppressed the effects of neurotransmitter release. In addition, TTX (1 µM) strongly potentiated the flow-mediated dilation response of isolated MA. Altogether, our data showed that TTX blocks NaV channels in resistance arteries and consecutively decreases vascular tone. This could explain the drop in total peripheral resistance observed during mammal tetrodotoxications.


Subject(s)
Aorta , Mesenteric Arteries , Mice , Animals , Tetrodotoxin/pharmacology , Mammals , Voltage-Gated Sodium Channel beta-1 Subunit
5.
Development ; 149(19)2022 10 01.
Article in English | MEDLINE | ID: mdl-36239412

ABSTRACT

The binding of 17ß-oestradiol to oestrogen receptor alpha (ERα) plays a crucial role in the control of reproduction, acting through both nuclear and membrane-initiated signalling. To study the physiological role of membrane ERα in the reproductive system, we used the C451A-ERα mouse model with selective loss of function of membrane ERα. Despite C451A-ERα mice being described as sterile, daily weighing and ultrasound imaging revealed that homozygous females do become pregnant, allowing the investigation of the role of ERα during pregnancy for the first time. All neonatal deaths of the mutant offspring mice resulted from delayed parturition associated with failure in pre-term progesterone withdrawal. Moreover, pregnant C451A-ERα females exhibited partial intrauterine embryo arrest at about E9.5. The observed embryonic lethality resulted from altered expansion of Tpbpa-positive spiral artery-associated trophoblast giant cells into the utero-placental unit, which is associated with an imbalance in expression of angiogenic factors. Together, these processes control the trophoblast-mediated spiral arterial remodelling. Hence, loss of membrane ERα within maternal tissues clearly alters the activity of invasive trophoblast cells during placentogenesis. This previously unreported function of membrane ERα could open new avenues towards a better understanding of human pregnancy-associated pathologies.


Subject(s)
Estrogen Receptor alpha , Trophoblasts , Animals , Estradiol/metabolism , Estrogen Receptor alpha/genetics , Female , Fertility , Humans , Mice , Placenta/metabolism , Pregnancy , Progesterone/metabolism , Receptors, Estrogen/metabolism , Trophoblasts/metabolism
6.
Antioxidants (Basel) ; 11(6)2022 May 28.
Article in English | MEDLINE | ID: mdl-35739974

ABSTRACT

Flow (shear stress)-mediated dilation (FMD) of resistance arteries is a rapid endothelial response involved in tissue perfusion. FMD is reduced early in cardiovascular diseases, generating a major risk factor for atherosclerosis. As alteration of mitochondrial fusion reduces endothelial cells' (ECs) sprouting and angiogenesis, we investigated its role in ECs responses to flow. Opa1 silencing reduced ECs (HUVECs) migration and flow-mediated elongation. In isolated perfused resistance arteries, FMD was reduced in Opa1+/- mice, a model of the human disease due to Opa1 haplo-insufficiency, and in mice with an EC specific Opa1 knock-out (EC-Opa1). Reducing mitochondrial oxidative stress restored FMD in EC-Opa1 mice. In isolated perfused kidneys from EC-Opa1 mice, flow induced a greater pressure, less ATP, and more H2O2 production, compared to control mice. Opa1 expression and mitochondrial length were reduced in ECs submitted in vitro to disturbed flow and in vivo in the atheroprone zone of the mouse aortic cross. Aortic lipid deposition was greater in Ldlr-/--Opa1+/- and in Ldlr-/--EC-Opa1 mice than in control mice fed with a high-fat diet. In conclusion, we found that reduction in mitochondrial fusion in mouse ECs altered the dilator response to shear stress due to excessive superoxide production and induced greater atherosclerosis development.

7.
Int J Mol Sci ; 23(5)2022 Mar 05.
Article in English | MEDLINE | ID: mdl-35270003

ABSTRACT

Flow-mediated dilation (FMD) of resistance arteries is essential for tissue perfusion but it decreases with ageing. As estrogen receptor alpha (Erα encoded by Esr1), and more precisely membrane ERα, plays an important role in FMD in young mice in a ligand-independent fashion, we evaluated its influence on this arteriolar function in ageing. We first confirmed that in young (6-month-old) mice, FMD of mesenteric resistance arteries was reduced in Esr1-/- (lacking ERα) and C451A-ERα (lacking membrane ERα). In old (24-month-old) mice, FMD was reduced in WT mice compared to young mice, whereas it was not further decreased in Esr1-/- and C451A-ERα mice. Markers of oxidative stress were similarly increased in old WT and C451A-ERα mice. Reduction in oxidative stress with superoxide dismutase plus catalase or Mito-tempo, which reduces mitochondrial superoxide restored FMD to a normal control level in young C451A-ERα mice as well as in old WT mice and old C451A-ERα mice. Estradiol-mediated dilation was absent in old WT mice. We conclude that oxidative stress is a key event in the decline of FMD, and that an early defect in membrane ERα recapitulates phenotypically and functionally ageing of these resistance arteries. The loss of this function could take part in vascular ageing.


Subject(s)
Estrogen Receptor alpha , Mesenteric Arteries , Aging/genetics , Animals , Estradiol , Estrogen Receptor alpha/genetics , Mesenteric Arteries/physiology , Mice
8.
Elife ; 102021 11 29.
Article in English | MEDLINE | ID: mdl-34842136

ABSTRACT

Estrogen receptor alpha (ERα) activation by estrogens prevents atheroma through its nuclear action, whereas plasma membrane-located ERα accelerates endothelial healing. The genetic deficiency of ERα was associated with a reduction in flow-mediated dilation (FMD) in one man. Here, we evaluated ex vivo the role of ERα on FMD of resistance arteries. FMD, but not agonist (acetylcholine, insulin)-mediated dilation, was reduced in male and female mice lacking ERα (Esr1-/- mice) compared to wild-type mice and was not dependent on the presence of estrogens. In C451A-ERα mice lacking membrane ERα, not in mice lacking AF2-dependent nuclear ERα actions, FMD was reduced, and restored by antioxidant treatments. Compared to wild-type mice, isolated perfused kidneys of C451A-ERα mice revealed a decreased flow-mediated nitrate production and an increased H2O2 production. Thus, endothelial membrane ERα promotes NO bioavailability through inhibition of oxidative stress and thereby participates in FMD in a ligand-independent manner.


Subject(s)
Blood Circulation , Estrogen Receptor alpha/genetics , Hydrogen Peroxide/metabolism , Animals , Estrogen Receptor alpha/metabolism , Female , Ligands , Male , Mice
9.
FASEB J ; 35(7): e21678, 2021 07.
Article in English | MEDLINE | ID: mdl-34133045

ABSTRACT

Hypertension is associated with excessive reactive oxygen species (ROS) production in vascular cells. Mitochondria undergo fusion and fission, a process playing a role in mitochondrial function. OPA1 is essential for mitochondrial fusion. Loss of OPA1 is associated with ROS production and cell dysfunction. We hypothesized that mitochondria fusion could reduce oxidative stress that defect in fusion would exacerbate hypertension. Using (a) Opa1 haploinsufficiency in isolated resistance arteries from Opa1+/- mice, (b) primary vascular cells from Opa1+/- mice, and (c) RNA interference experiments with siRNA against Opa1 in vascular cells, we investigated the role of mitochondria fusion in hypertension. In hypertension, Opa1 haploinsufficiency induced altered mitochondrial cristae structure both in vascular smooth muscle and endothelial cells but did not modify protein level of long and short forms of OPA1. In addition, we demonstrated an increase of mitochondrial ROS production, associated with a decrease of superoxide dismutase 1 protein expression. We also observed an increase of apoptosis in vascular cells and a decreased VSMCs proliferation. Blood pressure, vascular contractility, as well as endothelium-dependent and -independent relaxation were similar in Opa1+/- , WT, L-NAME-treated Opa1+/- and WT mice. Nevertheless, chronic NO-synthase inhibition with L-NAME induced a greater hypertension in Opa1+/- than in WT mice without compensatory arterial wall hypertrophy. This was associated with a stronger reduction in endothelium-dependent relaxation due to excessive ROS production. Our results highlight the protective role of mitochondria fusion in the vasculature during hypertension by limiting mitochondria ROS production.


Subject(s)
GTP Phosphohydrolases/physiology , Hypertension/prevention & control , Mitochondrial Dynamics , Protective Agents/administration & dosage , Animals , Apoptosis , Enzyme Inhibitors/toxicity , Hypertension/chemically induced , Hypertension/metabolism , Hypertension/pathology , Male , Mice, Inbred C57BL , Mice, Knockout , NG-Nitroarginine Methyl Ester/toxicity , Oxidative Stress , Reactive Oxygen Species/metabolism
10.
Mech Ageing Dev ; 194: 111416, 2021 03.
Article in English | MEDLINE | ID: mdl-33333130

ABSTRACT

The present review focuses on the effect of aging on flow-mediated outward remodeling (FMR) via alterations in estrogen metabolism, oxidative stress and inflammation. In ischemic disorders, the ability of the vasculature to adapt or remodel determines the quality of the recovery. FMR, which has a key role in revascularization, is a complex phenomenon that recruits endothelial and smooth muscle cells as well as the immune system. FMR becomes progressively less with age as a result of an increase in inflammation and oxidative stress, in part of mitochondrial origin. The alteration in FMR is greater in older individuals with risk factors and thus the therapy cannot merely amount to exercise with or without a mild vasodilating drug. Interestingly, the reduction in FMR occurs later in females. Estrogen and its alpha receptor (ERα) play a key role in FMR through the control of dilatory pathways including the angiotensin II type 2 receptor, thus providing possible tools to activate FMR in older subjects although only experimental data is available. Indeed, the main issue is the reversibility of the vascular damage induced over time, and to date promoting prevention and limiting exposure to the risk factors remain the best options in this regard.


Subject(s)
Aging , Arteries/physiopathology , Ischemia/physiopathology , Vascular Remodeling , Age Factors , Animals , Arteries/immunology , Arteries/metabolism , Collateral Circulation , Estrogens/metabolism , Female , Humans , Inflammation Mediators/metabolism , Ischemia/immunology , Ischemia/metabolism , Male , Mechanotransduction, Cellular , Neovascularization, Physiologic , Nitric Oxide/metabolism , Oxidative Stress , Regional Blood Flow , Sex Factors , Stress, Mechanical
11.
J Vasc Res ; 58(1): 16-26, 2021.
Article in English | MEDLINE | ID: mdl-33264773

ABSTRACT

Flow-mediated outward remodeling (FMR) is involved in postischemic revascularization. Angiotensin II type 2 receptor (AT2R), through activation of T-cell-mediated IL-17 production, and estrogens are involved in FMR. Thus, we investigated the interplay between estrogens and AT2R in FMR using a model of ligation of feed arteries supplying collateral pathways in mouse mesenteric arteries in vivo. Arteries were collected after 2 (inflammatory phase), 4 (diameter expansion phase), and 7 days (remodeling completed). We used AT2R+/+ and AT2R-/- ovariectomized (OVX) female mice treated or not with 17-beta-estradiol (E2). Seven days after ligation, arterial diameter was larger in high flow (HF) compared to normal flow (NF) arteries. FMR was absent in OVX mice and restored by E2. AT2R gene expression was higher in HF than in NF arteries only in E2-treated OVX AT2R+/+ mice. CD11b and TNF alpha levels (inflammatory phase), MMP2 and TIMP1 (extracellular matrix digestion), and NOS3 (diameter expansion phase) expression levels were higher in HF than in NF arteries only in E2-treated AT2R+/+ mice, not in the other groups. Thus, E2 is necessary for AT2R-dependent diameter expansion, possibly through activation of T-cell AT2R, in arteries submitted chronically to high blood flow.


Subject(s)
Estradiol/pharmacology , Estrogen Replacement Therapy , Mechanotransduction, Cellular , Mesenteric Arteries/drug effects , Receptor, Angiotensin, Type 2/metabolism , Vascular Remodeling/drug effects , Animals , CD11b Antigen/genetics , CD11b Antigen/metabolism , Female , Gene Expression Regulation , Matrix Metalloproteinase 2/genetics , Matrix Metalloproteinase 2/metabolism , Mesenteric Arteries/metabolism , Mesenteric Arteries/physiopathology , Mice, Inbred C57BL , Mice, Knockout , Nitric Oxide Synthase Type III/genetics , Nitric Oxide Synthase Type III/metabolism , Ovariectomy , Receptor, Angiotensin, Type 2/genetics , Regional Blood Flow , Stress, Mechanical , Tissue Inhibitor of Metalloproteinase-1/genetics , Tissue Inhibitor of Metalloproteinase-1/metabolism , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism
12.
Circ Res ; 127(12): 1473-1487, 2020 12 04.
Article in English | MEDLINE | ID: mdl-33012251

ABSTRACT

RATIONALE: Tamoxifen prevents the recurrence of breast cancer and is also beneficial against bone demineralization and arterial diseases. It acts as an ER (estrogen receptor) α antagonist in ER-positive breast cancers, whereas it mimics the protective action of 17ß-estradiol in other tissues such as arteries. However, the mechanisms of these tissue-specific actions remain unclear. OBJECTIVE: Here, we tested whether tamoxifen is able to accelerate endothelial healing and analyzed the underlying mechanisms. METHODS AND RESULTS: Using 3 complementary mouse models of carotid artery injury, we demonstrated that both tamoxifen and estradiol accelerated endothelial healing, but only tamoxifen required the presence of the underlying medial smooth muscle cells. Chronic treatment with 17ß-estradiol and tamoxifen elicited differential gene expression profiles in the carotid artery. The use of transgenic mouse models targeting either whole ERα in a cell-specific manner or ERα subfunctions (membrane/extranuclear versus genomic/transcriptional) demonstrated that 17ß-estradiol-induced acceleration of endothelial healing is mediated by membrane ERα in endothelial cells, while the effect of tamoxifen is mediated by the nuclear actions of ERα in smooth muscle cells. CONCLUSIONS: Whereas tamoxifen acts as an antiestrogen and ERα antagonist in breast cancer but also on the membrane ERα of endothelial cells, it accelerates endothelial healing through activation of nuclear ERα in smooth muscle cells, inviting to revisit the mechanisms of action of selective modulation of ERα.


Subject(s)
Carotid Artery Injuries/drug therapy , Endothelial Cells/drug effects , Estrogen Receptor alpha/drug effects , Muscle, Smooth, Vascular/drug effects , Myocytes, Smooth Muscle/drug effects , Selective Estrogen Receptor Modulators/pharmacology , Tamoxifen/pharmacology , Wound Healing/drug effects , Animals , Carotid Arteries/drug effects , Carotid Arteries/metabolism , Carotid Arteries/pathology , Carotid Artery Injuries/metabolism , Carotid Artery Injuries/pathology , Disease Models, Animal , Endothelial Cells/metabolism , Endothelial Cells/pathology , Estradiol/pharmacology , Estrogen Receptor alpha/genetics , Estrogen Receptor alpha/metabolism , Female , Mice, Inbred C57BL , Mice, Transgenic , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/pathology , Myocytes, Smooth Muscle/pathology , Signal Transduction , Time Factors
13.
Arterioscler Thromb Vasc Biol ; 40(9): 2143-2158, 2020 09.
Article in English | MEDLINE | ID: mdl-32640903

ABSTRACT

OBJECTIVE: ERα (estrogen receptor alpha) exerts nuclear genomic actions and also rapid membrane-initiated steroid signaling. The mutation of the cysteine 451 into alanine in vivo has recently revealed the key role of this ERα palmitoylation site on some vasculoprotective actions of 17ß-estradiol (E2) and fertility. Here, we studied the in vivo role of the arginine 260 of ERα which has also been described to be involved in its E2-induced rapid signaling with PI-3K (phosphoinositide 3-kinase) as well as G protein in cultured cell lines. Approach and Results: We generated a mouse model harboring a point mutation of the murine counterpart of this arginine into alanine (R264A-ERα). In contrast to the C451A-ERα, the R264A-ERα females are fertile with standard hormonal serum levels and normal control of hypothalamus-pituitary ovarian axis. Although R264A-ERα protein abundance was normal, the well-described membrane ERα-dependent actions of estradiol, such as the rapid dilation of mesenteric arteries and the acceleration of endothelial repair of carotid, were abrogated in R264A-ERα mice. In striking contrast, E2-regulated gene expression was highly preserved in the uterus and the aorta, revealing intact nuclear/genomic actions in response to E2. Consistently, 2 recognized nuclear ERα-dependent actions of E2, namely atheroma prevention and flow-mediated arterial remodeling were totally preserved. CONCLUSIONS: These data underline the exquisite role of arginine 264 of ERα for endothelial membrane-initiated steroid signaling effects of E2 but not for nuclear/genomic actions. This provides the first model of fertile mouse with no overt endocrine abnormalities with specific loss-of-function of rapid ERα signaling in vascular functions.


Subject(s)
Carotid Artery Injuries/drug therapy , Endothelium, Vascular/drug effects , Estradiol/pharmacology , Estrogen Receptor alpha/agonists , Estrogen Replacement Therapy , Estrogens/pharmacology , Fertility/drug effects , Mesenteric Arteries/drug effects , Point Mutation , Animals , Atherosclerosis/metabolism , Atherosclerosis/pathology , Atherosclerosis/prevention & control , Carotid Artery Injuries/metabolism , Carotid Artery Injuries/pathology , Carotid Artery Injuries/physiopathology , Cell Proliferation/drug effects , Endothelium, Vascular/injuries , Endothelium, Vascular/metabolism , Endothelium, Vascular/physiopathology , Enzyme Activation , Estrogen Receptor alpha/genetics , Estrogen Receptor alpha/metabolism , Estrous Cycle/drug effects , Female , Male , Mesenteric Arteries/metabolism , Mesenteric Arteries/physiopathology , Mice, Inbred C57BL , Nitric Oxide Synthase Type III/metabolism , Ovariectomy , Re-Epithelialization/drug effects , Signal Transduction , Time Factors , Uterus/drug effects , Uterus/metabolism , Vascular Remodeling/drug effects , Vasodilation/drug effects
14.
J Am Heart Assoc ; 9(5): e013895, 2020 03 03.
Article in English | MEDLINE | ID: mdl-32102616

ABSTRACT

Background The cardiovascular protective effects of estrogens in premenopausal women depend mainly on estrogen receptor α (ERα). ERα activates nuclear gene transcription regulation and membrane-initiated signaling. The latter plays a key role in estrogen-dependent activation of endothelial NO synthase. The goal of the present work was to determine the respective roles of the 2 ERα activities in endothelial function and cardiac and kidney damage in young and old female mice with hypertension, which is a major risk factor in postmenopausal women. Methods and Results Five- and 18-month-old female mice lacking either ERα (ERα-/-), the nuclear activating function AF2 of ERα (AF2°), or membrane-located ERα (C451A) were treated with angiotensin II (0.5 mg/kg per day) for 1 month. Systolic blood pressure, left ventricle weight, vascular reactivity, and kidney function were then assessed. Angiotensin II increased systolic blood pressure, ventricle weight, and vascular contractility in ERα-/- and AF2° mice more than in wild-type and C451A mice, independent of age. In both the aorta and mesenteric resistance arteries, angiotensin II and aging reduced endothelium-dependent relaxation in all groups, but this effect was more pronounced in ERα-/- and AF2° than in the wild-type and C451A mice. Kidney inflammation and oxidative stress, as well as blood urea and creatinine levels, were also more pronounced in old hypertensive ERα-/- and AF2° than in old hypertensive wild-type and C451A mice. Conclusions The nuclear ERα-AF2 dependent function attenuates angiotensin II-dependent hypertension and protects target organs in aging mice, whereas membrane ERα signaling does not seem to play a role.


Subject(s)
Aging/metabolism , Estrogen Receptor alpha/metabolism , Hypertension/prevention & control , Hypertrophy, Left Ventricular/prevention & control , Nephritis/prevention & control , Age Factors , Aging/genetics , Angiotensin II , Animals , Aorta, Thoracic/metabolism , Aorta, Thoracic/physiopathology , Arterial Pressure , Disease Models, Animal , Estrogen Receptor alpha/deficiency , Estrogen Receptor alpha/genetics , Female , Hypertension/chemically induced , Hypertension/metabolism , Hypertension/physiopathology , Hypertrophy, Left Ventricular/etiology , Hypertrophy, Left Ventricular/metabolism , Hypertrophy, Left Ventricular/physiopathology , Kidney/metabolism , Kidney/physiopathology , Mesenteric Arteries/metabolism , Mesenteric Arteries/physiopathology , Mice, Knockout , Nephritis/etiology , Nephritis/metabolism , Nephritis/physiopathology , Vasodilation , Ventricular Function, Left , Ventricular Remodeling
15.
Angiogenesis ; 23(2): 249-264, 2020 05.
Article in English | MEDLINE | ID: mdl-31900750

ABSTRACT

INTRODUCTION: Although thioredoxin-interacting protein (TXNIP) is involved in a variety of biological functions, the contribution of endothelial TXNIP has not been well-defined in regards to endothelial and vascular function or in post-ischemic revascularisation. We postulated that inhibition of endothelial TXNIP with siRNA or in a Cre-LoxP system could be involved in protection from high fat, high protein, low carbohydrate (HFHPLC) diet-induced oxidative stress and endothelial dysfunction, leading to vascular damage and impaired revascularisation in vivo. METHODS AND RESULTS: To investigate the role of endothelial TXNIP, the TXNIP gene was deleted in endothelial cells using anti-TXNIP siRNA treatment or the Cre-LoxP system. Murine models were fed a HFHPLC diet, known to induce metabolic disorders. Endothelial TXNIP targeting resulted in protection against metabolic disorder-related endothelial oxidative stress and endothelial dysfunction. This protective effect mitigates media cell loss induced by metabolic disorders and hampered metabolic disorder-related vascular dysfunction assessed by aortic reactivity and distensibility. In aortic ring cultures, metabolic disorders impaired vessel sprouting and this alteration was alleviated by deletion of endothelial TXNIP. When subjected to ischemia, mice fed a HFHPLC diet exhibited defective post-ischemic angiogenesis and impaired blood flow recovery in hind limb ischemia. However, reducing endothelial TXNIP rescued metabolic disorder-related impairment of ischemia-induced revascularisation. CONCLUSION: Collectively, these results show that targeting endothelial TXNIP in metabolic disorders is essential to maintaining endothelial function, vascular function and improving ischemia-induced revascularisation, making TXNIP a potential therapeutic target for therapy of vascular complications related to metabolic disorders.


Subject(s)
Carrier Proteins/genetics , Endothelial Cells/physiology , Ischemia , Metabolic Diseases/physiopathology , Neovascularization, Physiologic/genetics , Thioredoxins/genetics , Animals , Cells, Cultured , Cytoprotection/genetics , Hindlimb/blood supply , Ischemia/genetics , Ischemia/metabolism , Ischemia/physiopathology , Ischemia/prevention & control , Male , Metabolic Diseases/complications , Metabolic Diseases/genetics , Metabolic Diseases/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Oxidative Stress/physiology
16.
Fitoterapia ; 131: 182-188, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30339926

ABSTRACT

Secondary metabolites from lichens are known for exhibiting various biological effects such as anti-inflammatory, antioxidant and antibacterial activities. Despite this wide range of reported biological effects, their impact on the formation of advanced glycation end products (AGEs) remains vastly unexplored. The latter are known contributors to lifestyle and age-related diseases such as Alzheimer and Parkinson. Moreover, the development of atherosclerosis and arterial stiffness is causally linked to the formation of AGEs. With this in mind, the present work evaluated the inhibitory effects of secondary lichen metabolites on the formation of pentosidine-like AGEs' by using an in vitro, Maillard reaction based, fluorescence assay. Overall, thirty-seven natural and five synthetically modified compounds were tested, eighteen of which exhibiting IC50 values in the range of 0.05 to 0.70 mM. This corresponds to 2 to 32 fold of the inhibitory activity of aminoguanidine. Targeting one major inhibiting mechanism of AGEs formation, all compounds were additionally evaluated on their radical scavenging capacities in an DPPH assay. Furthermore, as both AGEs' formation and hypertension are major risk factors for atherosclerosis, compounds that were available in sufficient amounts were also tested for their vasodilative effects. Overall, and though some of the active compounds were previously reported cytotoxic, present results highlight the interesting potential of secondary lichen metabolites as anti-AGEs and vasodilative agents.


Subject(s)
Biological Products/pharmacology , Glycation End Products, Advanced/antagonists & inhibitors , Lichens/chemistry , Vasodilator Agents/pharmacology , Animals , Biological Products/isolation & purification , Male , Molecular Structure , Rats, Inbred WKY , Secondary Metabolism , Vasodilator Agents/isolation & purification
17.
J Am Heart Assoc ; 7(13)2018 06 29.
Article in English | MEDLINE | ID: mdl-29959137

ABSTRACT

BACKGROUND: Although estrogen receptor α (ERα) acts primarily as a transcription factor, it can also elicit membrane-initiated steroid signaling. Pharmacological tools and transgenic mouse models previously highlighted the key role of ERα membrane-initiated steroid signaling in 2 actions of estrogens in the endothelium: increase in NO production and acceleration of reendothelialization. METHODS AND RESULTS: Using mice with ERα mutated at cysteine 451 (ERaC451A), recognized as the key palmitoylation site required for ERα plasma membrane location, and mice with disruption of nuclear actions because of inactivation of activation function 2 (ERaAF20 = ERaAF2°), we sought to fully characterize the respective roles of nuclear versus membrane-initiated steroid signaling in the arterial protection conferred by ERα. ERaC451A mice were fully responsive to estrogens to prevent atheroma and angiotensin II-induced hypertension as well as to allow flow-mediated arteriolar remodeling. By contrast, ERαAF20 mice were unresponsive to estrogens for these beneficial vascular effects. Accordingly, selective activation of nuclear ERα with estetrol was able to prevent hypertension and to restore flow-mediated arteriolar remodeling. CONCLUSIONS: Altogether, these results reveal an unexpected prominent role of nuclear ERα in the vasculoprotective action of estrogens with major implications in medicine, particularly for selective nuclear ERα agonist, such as estetrol, which is currently under development as a new oral contraceptive and for hormone replacement therapy in menopausal women.


Subject(s)
Aortic Diseases/prevention & control , Arteries/metabolism , Atherosclerosis/prevention & control , Cell Membrane/metabolism , Cell Nucleus/metabolism , Estrogen Receptor alpha/metabolism , Hypertension/prevention & control , Animals , Aortic Diseases/genetics , Aortic Diseases/metabolism , Aortic Diseases/pathology , Arteries/drug effects , Arteries/pathology , Arteries/physiopathology , Atherosclerosis/genetics , Atherosclerosis/metabolism , Atherosclerosis/pathology , Blood Pressure , Cell Membrane/drug effects , Cell Nucleus/drug effects , Disease Models, Animal , Estetrol/pharmacology , Estradiol/pharmacology , Estrogen Receptor alpha/agonists , Estrogen Receptor alpha/genetics , Estrogens/pharmacology , Female , Hypertension/genetics , Hypertension/metabolism , Hypertension/physiopathology , Mice, Inbred C57BL , Mice, Knockout , Plaque, Atherosclerotic , Receptors, LDL/genetics , Receptors, LDL/metabolism , Signal Transduction , Vascular Remodeling
18.
Cell ; 173(3): 762-775.e16, 2018 04 19.
Article in English | MEDLINE | ID: mdl-29677517

ABSTRACT

Mechanotransduction plays a crucial role in vascular biology. One example of this is the local regulation of vascular resistance via flow-mediated dilation (FMD). Impairment of this process is a hallmark of endothelial dysfunction and a precursor to a wide array of vascular diseases, such as hypertension and atherosclerosis. Yet the molecules responsible for sensing flow (shear stress) within endothelial cells remain largely unknown. We designed a 384-well screening system that applies shear stress on cultured cells. We identified a mechanosensitive cell line that exhibits shear stress-activated calcium transients, screened a focused RNAi library, and identified GPR68 as necessary and sufficient for shear stress responses. GPR68 is expressed in endothelial cells of small-diameter (resistance) arteries. Importantly, Gpr68-deficient mice display markedly impaired acute FMD and chronic flow-mediated outward remodeling in mesenteric arterioles. Therefore, GPR68 is an essential flow sensor in arteriolar endothelium and is a critical signaling component in cardiovascular pathophysiology.


Subject(s)
Mechanotransduction, Cellular , RNA Interference , Receptors, G-Protein-Coupled/physiology , Animals , Biocompatible Materials , Calcium/metabolism , Cell Line, Tumor , Endothelial Cells/physiology , Endothelium, Vascular/cytology , HEK293 Cells , Human Umbilical Vein Endothelial Cells , Humans , Hydrogen-Ion Concentration , Mesenteric Arteries/physiology , Mice , Mice, Inbred C57BL , Mice, Knockout , Nitric Oxide/metabolism , RNA, Small Interfering/metabolism , Receptors, G-Protein-Coupled/genetics , Shear Strength , Stress, Mechanical , Vascular Resistance
19.
Sci Rep ; 7: 45625, 2017 03 31.
Article in English | MEDLINE | ID: mdl-28361992

ABSTRACT

Diabetes Mellitus is associated with severe cardiovascular disorders involving the renin-angiotensin system, mainly through activation of the angiotensin II type 1 receptor (AT1R). Although the type 2 receptor (AT2R) opposes the effects of AT1R, with vasodilator and anti-trophic properties, its role in diabetes is debatable. Thus we investigated AT2R-mediated dilatation in a model of type 1 diabetes induced by streptozotocin in 5-month-old male mice lacking AT2R (AT2R-/y). Glucose tolerance was reduced and markers of inflammation and oxidative stress (cyclooxygenase-2, gp91phox p22phox and p67phox) were increased in AT2R-/y mice compared to wild-type (WT) animals. Streptozotocin-induced hyperglycaemia was higher in AT2R-/y than in WT mice. Arterial gp91phox and MnSOD expression levels in addition to blood 8-isoprostane and creatinine were further increased in diabetic AT2R-/y mice compared to diabetic WT mice. AT2R-dependent dilatation in both isolated mesenteric resistance arteries and perfused kidneys was greater in diabetic mice than in non-diabetic animals. Thus, in type 1 diabetes, AT2R may reduce glycaemia and display anti-oxidant and/or anti-inflammatory properties in association with greater vasodilatation in mesenteric arteries and in the renal vasculature, a major target of diabetes. Therefore AT2R might represent a new therapeutic target in diabetes.


Subject(s)
Diabetes Mellitus, Type 1/physiopathology , Dilatation, Pathologic/physiopathology , Microvessels/physiopathology , Receptor, Angiotensin, Type 2/physiology , Animals , Diabetes Mellitus, Experimental/physiopathology , Disease Models, Animal , Inflammation/metabolism , Kidney/blood supply , Kidney/physiopathology , Male , Mesenteric Arteries/physiopathology , Mice, Transgenic , Oxidative Stress , Receptor, Angiotensin, Type 1/metabolism , Vascular Resistance
20.
Cardiovasc Res ; 112(1): 515-25, 2016 10.
Article in English | MEDLINE | ID: mdl-27328880

ABSTRACT

AIMS: The angiotensin II type 1 receptor (AT1R) through the activation of immune cells plays a key role in arterial inward remodelling and reduced blood flow in cardiovascular disorders. On the other side, flow (shear stress)-mediated outward remodelling (FMR), involved in collateral arteries growth in ischaemic diseases, allows revascularization. We hypothesized that the type 2 receptor (AT2R), described as opposing the effects of AT1R, could be involved in FMR. METHODS AND RESULTS: We studied FMR using a model of ligation of feed arteries supplying collateral pathways in the mouse mesenteric arterial bed in vivo. Seven days after ligation, diameter increased by 30% in high flow (HF) arteries compared with normal flow vessels. FMR was absent in mice lacking AT2R. At Day 2, T lymphocytes expressing AT2R were present preferentially around HF arteries. FMR did not occur in athymic (nude) mice lacking T cells and in mice treated with anti-CD3ε antibodies. AT2R activation induced interleukin-17 production by memory T cells. Treatment of nude mice or AT2R-deficient mice with interleukin-17 restored diameter enlargement in HF arteries. Interleukin-17 increased NO-dependent relaxation and matrix metalloproteinases activity, both important in FMR. Remodelling of feeding arteries in the skin flap model of ischaemia was also absent in AT2R-deficient mice and in anti-interleukin-17-treated mice. Finally, remodelling, absent in 12-month-old mice, was restored by a treatment with the AT2R non-peptidic agonist C21. CONCLUSION: AT2R-dependent interleukin-17 production by T lymphocyte is necessary for collateral artery growth and could represent a new therapeutic target in ischaemic disorders.


Subject(s)
CD4-Positive T-Lymphocytes/metabolism , Interleukin-17/metabolism , Ischemia/metabolism , Mechanotransduction, Cellular , Mesenteric Arteries/metabolism , Mesentery/blood supply , Receptor, Angiotensin, Type 2/metabolism , Skin/blood supply , Splanchnic Circulation , Vascular Remodeling , Age Factors , Animals , Arterial Pressure , CD4-Positive T-Lymphocytes/drug effects , CD4-Positive T-Lymphocytes/immunology , Collateral Circulation , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Genotype , Ischemia/genetics , Ischemia/immunology , Ischemia/physiopathology , Ligation , Macrophages/drug effects , Macrophages/metabolism , Mechanotransduction, Cellular/drug effects , Mesenteric Arteries/drug effects , Mesenteric Arteries/immunology , Mesenteric Arteries/surgery , Mice , Mice, Knockout , Mice, Nude , Phenotype , RAW 264.7 Cells , Receptor, Angiotensin, Type 2/agonists , Receptor, Angiotensin, Type 2/deficiency , Receptor, Angiotensin, Type 2/genetics , Regional Blood Flow , Splanchnic Circulation/drug effects , Stress, Mechanical , Time Factors , Vascular Resistance , Vasodilation
SELECTION OF CITATIONS
SEARCH DETAIL
...