Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Mol Oncol ; 2023 Dec 07.
Article in English | MEDLINE | ID: mdl-38060377

ABSTRACT

Circulating tumor DNA (ctDNA) detection has multiple promising applications in oncology, but the road toward implementation in clinical practice is unclear. We aimed to support the implementation process by exploring potential future pathways of ctDNA testing. To do so, we studied four ctDNA-testing applications in two cancer types and elicited opinions from 30 ctDNA experts in the Netherlands. Our results showed that the current available evidence differed per application and cancer type. Tumor profiling and monitoring treatment response were found most likely to be implemented in non-small cell lung cancer (NSCLC) within 5 years. For colorectal cancer, applications of ctDNA testing were found to be at an early stage in the implementation process. Demonstrating clinical utility was found a key aspect for successful implementation, but there was no consensus regarding the evidence requirements. The next step toward implementation is to define how clinical utility of biomarkers should be evaluated. Finally, these data indicate that specific challenges for each clinical application and tumor type should be appropriately addressed in a deliberative process involving all stakeholders to ensure implementation of ctDNA testing and timely access for patients.

2.
J Mol Diagn ; 25(1): 36-45, 2023 01.
Article in English | MEDLINE | ID: mdl-36402278

ABSTRACT

Circulating tumor DNA (ctDNA) is a promising new biomarker with multiple potential applications in cancer care. Estimating total cost of ctDNA testing is necessary for reimbursement and implementation, but challenging because of variations in workflow. We aimed to develop a micro-costing framework for consistent cost calculation of ctDNA testing. First, the foundation of the framework was built, based on the complete step-wise diagnostic workflow of ctDNA testing. Second, the costing method was set up, including costs for personnel, materials, equipment, overhead, and failures. Third, the framework was evaluated by experts and applied to six case studies, including PCR-, mass spectrometry-, and next-generation sequencing-based platforms, from three Dutch hospitals. The developed ctDNA micro-costing framework includes the diagnostic workflow from blood sample collection to diagnostic test result. The framework was developed from a Dutch perspective and takes testing volume into account. An open access tool is provided to allow for laboratory-specific calculations to explore the total costs of ctDNA testing specific workflow parameters matching the setting of interest. It also allows to straightforwardly assess the impact of alternative prices or assumptions on the cost per sample by simply varying the input parameters. The case studies showed a wide range of costs, from €168 to €7638 ($199 to $9124) per sample, and generated information. These costs are sensitive to the (coverage of) platform, setting, and testing volume.


Subject(s)
Circulating Tumor DNA , Humans , Circulating Tumor DNA/genetics , High-Throughput Nucleotide Sequencing , Polymerase Chain Reaction , Biomarkers, Tumor/genetics
3.
Cancer Cell ; 40(9): 999-1009.e6, 2022 09 12.
Article in English | MEDLINE | ID: mdl-36055228

ABSTRACT

Cancer patients benefit from early tumor detection since treatment outcomes are more favorable for less advanced cancers. Platelets are involved in cancer progression and are considered a promising biosource for cancer detection, as they alter their RNA content upon local and systemic cues. We show that tumor-educated platelet (TEP) RNA-based blood tests enable the detection of 18 cancer types. With 99% specificity in asymptomatic controls, thromboSeq correctly detected the presence of cancer in two-thirds of 1,096 blood samples from stage I-IV cancer patients and in half of 352 stage I-III tumors. Symptomatic controls, including inflammatory and cardiovascular diseases, and benign tumors had increased false-positive test results with an average specificity of 78%. Moreover, thromboSeq determined the tumor site of origin in five different tumor types correctly in over 80% of the cancer patients. These results highlight the potential properties of TEP-derived RNA panels to supplement current approaches for blood-based cancer screening.


Subject(s)
Neoplasms , RNA , Biomarkers, Tumor/genetics , Blood Platelets , Early Detection of Cancer/methods , Humans , Neoplasms/diagnosis , Neoplasms/genetics , RNA/genetics
4.
Mol Oncol ; 16(14): 2719-2732, 2022 07.
Article in English | MEDLINE | ID: mdl-35674097

ABSTRACT

Stage II-IIIA nonsmall cell lung cancer (NSCLC) patients receive adjuvant chemotherapy after surgery as standard-of-care treatment, even though only approximately 5.8% of patients will benefit. Identifying patients with minimal residual disease (MRD) after surgery using tissue-informed testing of postoperative plasma circulating cell-free tumour DNA (ctDNA) may allow adjuvant therapy to be withheld from patients without MRD. However, the detection of MRD in the postoperative setting is challenging, and more sensitive methods are urgently needed. We developed a method that combines variant calling and a novel ctDNA fragment length analysis using hybrid capture sequencing data. Among 36 stage II-IIIA NSCLC patients, this method distinguished patients with and without recurrence of disease in a 20 times repeated 10-fold cross validation with 75% accuracy (P = 0.0029). In contrast, using only variant calling or only fragment length analysis, no signification distinction between patients was shown (P = 0.24 and P = 0.074 respectively). In addition, a variant-level fragmentation score was developed that was able to classify variants detected in plasma cfDNA into tumour-derived or white-blood-cell-derived variants with 84% accuracy. The findings in this study may help drive the integration of various types of information from the same data, eventually leading to cheaper and more sensitive techniques to be used in this challenging clinical setting.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Cell-Free Nucleic Acids , Circulating Tumor DNA , Lung Neoplasms , Biomarkers, Tumor/genetics , Carcinoma, Non-Small-Cell Lung/diagnosis , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/surgery , Circulating Tumor DNA/genetics , Humans , Lung Neoplasms/diagnosis , Lung Neoplasms/genetics , Lung Neoplasms/surgery , Neoplasm, Residual/diagnosis , Neoplasm, Residual/genetics , Neoplasm, Residual/pathology
5.
Cancers (Basel) ; 14(7)2022 Mar 31.
Article in English | MEDLINE | ID: mdl-35406555

ABSTRACT

Tissue biopsies can be burdensome and are only effective in 10-30% of patients with metastasized non-small-cell lung cancer (mNSCLC). Next-generation sequencing (NGS) on cell-free DNA (cfDNA) might be an attractive alternative. We evaluated the costs, throughput time, and diagnostic yield of two diagnostic scenarios with tissue and cfDNA for mNSCLC patients, compared to diagnostics based on tissue biopsy alone. Data were retrieved from 209 stage IV NSCLC patients included in 10 hospitals in the Netherlands in the observational Lung cancer Early Molecular Assessment (LEMA) trial. Discrete event simulation was developed to compare three scenarios, using LEMA data as input where possible: (1) diagnostics with "tissue only"; (2) diagnostics with "cfDNA first", and subsequent tissue biopsy if required (negative for EGFR, BRAF ALK, ROS1); (3) cfDNA if tissue biopsy failed ("tissue first"). Scenario- and probabilistic analyses were performed to quantify uncertainty. In scenario 1, 84% (Credibility Interval [CrI] 70-94%) of the cases had a clinically relevant test result, compared to 93% (CrI 86-98%) in scenario 2, and 93% (CrI 86-99%) in scenario 3. The mean throughput time was 20 days (CrI 17-23) pp in scenario 1, 9 days (CrI 7-11) in scenario 2, and 19 days (CrI 16-22) in scenario 3. Mean costs were €2304 pp (CrI €2067-2507) in scenario 1, compared to €3218 (CrI €3071-3396) for scenario 2, and €2448 (CrI €2382-2506) for scenario 3. Scenarios 2 and 3 led to a reduction in tissue biopsies of 16% and 9%, respectively. In this process-based simulation analysis, the implementation of cfDNA for patients with mNSCLC resulted in faster completion of molecular profiling with more identified targets, with marginal extra costs in scenario 3.

6.
JCO Precis Oncol ; 52021 07.
Article in English | MEDLINE | ID: mdl-34632253

ABSTRACT

Comprehensive molecular profiling (CMP) plays an essential role in clinical decision making in metastatic non-small-cell lung cancer (mNSCLC). Circulating tumor DNA (ctDNA) analysis provides possibilities for molecular tumor profiling. In this study, we aim to explore the additional value of centralized ctDNA profiling next to current standard-of-care protocolled tissue-based molecular profiling (SoC-TMP) in the primary diagnostic setting of mNSCLC in the Netherlands. METHODS: Pretreatment plasma samples from 209 patients with confirmed mNSCLC were analyzed retrospectively using the NGS AVENIO ctDNA Targeted Kit (Roche Diagnostics, Basel, Switzerland) and compared with paired prospective pretreatment tissue-based molecular profiling from patient records. The AVENIO panel is designed to detect single-nucleotide variants, copy-number variations, insertions or deletions, and tyrosine kinase fusion in 17 genes. RESULTS: Potentially targetable drivers were detected with SoC-TMP alone in 34.4% of patients. Addition of clonal hematopoiesis of indeterminate potential-corrected, plasma-based CMP increased this to 39.7% (P < .001). Concordance between SoC-TMP and plasma-CMP was 86.6% for potentially targetable drivers. Clinical sensitivity of plasma-CMP was 75.2% for any oncogenic driver. Specificity and positive predictive value were more than 90% for all oncogenic drivers. CONCLUSION: Plasma-CMP is a reliable tool in the primary diagnostic setting, although it cannot fully replace SoC-TMP. Complementary profiling by combined SoC-TMP and plasma-CMP increased the proportion of patients who are eligible for targeted treatment.


Subject(s)
Biomarkers, Tumor/genetics , Carcinoma, Non-Small-Cell Lung/genetics , Circulating Tumor DNA/genetics , Lung Neoplasms/genetics , Carcinogenesis/genetics , Carcinoma, Non-Small-Cell Lung/blood , Carcinoma, Non-Small-Cell Lung/diagnosis , Circulating Tumor DNA/blood , Circulating Tumor DNA/isolation & purification , DNA Copy Number Variations , High-Throughput Nucleotide Sequencing , Humans , Lung Neoplasms/blood , Lung Neoplasms/diagnosis , Netherlands , Prospective Studies
7.
Clin Chem ; 67(7): 959-967, 2021 07 06.
Article in English | MEDLINE | ID: mdl-33842952

ABSTRACT

BACKGROUND: Bio-Rad droplet-digital PCR is a highly sensitive method that can be used to detect tumor mutations in circulating cell-free DNA (cfDNA) of patients with cancer. Correct interpretation of ddPCR results is important for optimal sensitivity and specificity. Despite its widespread use, no standardized method to interpret ddPCR data is available, nor have technical artifacts affecting ddPCR results been widely studied. METHODS: False positive rates were determined for 6 ddPCR assays at variable amounts of input DNA, revealing polymerase induced false positive events (PIFs) and other false positives. An in silico correction algorithm, known as the adaptive LoB and PIFs: an automated correction algorithm (ALPACA), was developed to remove PIFs and apply an adaptive limit of blank (LoB) to individual samples. Performance of ALPACA was compared to a standard strategy (no PIF correction and static LoB = 3) using data from commercial reference DNA, healthy volunteer cfDNA, and cfDNA from a real-life cohort of 209 patients with stage IV nonsmall cell lung cancer (NSCLC) whose tumor and cfDNA had been molecularly profiled. RESULTS: Applying ALPACA reduced false positive results in healthy cfDNA compared to the standard strategy (specificity 98 vs 88%, P = 10-5) and stage IV NSCLC patient cfDNA (99 vs 93%, P = 10-11), while not affecting sensitivity in commercial reference DNA (70 vs 68% P = 0.77) or patient cfDNA (82 vs 88%, P = 0.13). Overall accuracy in patient samples was improved (98 vs 92%, P = 10-7). CONCLUSIONS: Correction of PIFs and application of an adaptive LoB increases specificity without a loss of sensitivity in ddPCR, leading to a higher accuracy in a real-life cohort of patients with stage IV NSCLC.


Subject(s)
Algorithms , Carcinoma, Non-Small-Cell Lung , DNA Mutational Analysis , Lung Neoplasms , Carcinoma, Non-Small-Cell Lung/genetics , Cell-Free Nucleic Acids , DNA Mutational Analysis/methods , Humans , Lung Neoplasms/genetics , Mutation , Polymerase Chain Reaction/methods
8.
J Mol Diagn ; 22(12): 1430-1437, 2020 12.
Article in English | MEDLINE | ID: mdl-32961317

ABSTRACT

Detection of KRAS, NRAS, and BRAF mutations in tumor tissue is currently used to predict resistance to treatment with anti-epidermal growth factor receptor (EGFR) antibodies in patients with metastatic colorectal cancer (mCRC). Liquid biopsies are minimally invasive, and cell-free circulating tumor DNA (ctDNA) mutation analyses may better represent tumor heterogeneity. This study examined the incorporation of liquid biopsy RAS/BRAF ctDNA analyses into diagnostic strategies to determine mCRC patient eligibility for anti-EGFR therapy. Tumor tissue and liquid biopsies were collected from 100 mCRC patients with liver-only metastases in a multicenter prospective clinical trial. Three diagnostic strategies incorporating droplet digital PCR ctDNA analyses were compared with routine tumor tissue RAS/BRAF mutation profiling using decision tree analyses. Tissue DNA mutations in KRAS, NRAS, and BRAF were present in 54%, 0%, and 3% of mCRC patients, respectively. A 93% concordance was observed between tissue DNA and liquid biopsy ctDNA mutations. The proportion of patients with RAS/BRAF alterations increased from 57% to 60% for diagnostic strategies that combined tissue and liquid biopsy mutation analyses. Consecutive RAS/BRAF ctDNA analysis followed by tissue DNA analysis in case of a liquid biopsy-negative result appeared to be the most optimal diagnostic strategy to comprehensively determine eligibility for anti-EGFR therapy in a cost-saving manner. These results highlight the potential clinical utility of liquid biopsies for detecting primary resistance to anti-EGFR-targeted therapies.


Subject(s)
Circulating Tumor DNA/genetics , Colorectal Neoplasms/diagnosis , Colorectal Neoplasms/pathology , Liver Neoplasms/secondary , Mutation , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins p21(ras)/genetics , Biomarkers, Tumor/genetics , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , DNA Mutational Analysis/economics , DNA Mutational Analysis/methods , Data Accuracy , Drug Resistance, Neoplasm/genetics , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/genetics , Female , GTP Phosphohydrolases/genetics , Humans , Liquid Biopsy/economics , Male , Membrane Proteins/genetics , Polymerase Chain Reaction/economics , Polymerase Chain Reaction/methods , Prospective Studies , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...