Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Steroids ; 99(Pt B): 125-30, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25668614

ABSTRACT

Due to their non-charged character, liquid chromatography-electrospray ionization-mass spectrometry (LC-ESI-MS) measurements of oxysterols are often performed after derivatization with e.g. charged Girard reagents. However, derivatization reactions are time-consuming and may require numerous steps to remove excess reagent. In addition, extensive sample handling can be associated with cholesterol autoxidation, resulting in analyte artifacts and hence false positives. Nano scale liquid chromatography in combination with electrospray-mass spectrometry (nanoLC-ESI-MS) is a powerful tool for analyzing limited samples, due to substantially increased sensitivity compared to conventional LC-ESI-MS. The signal enhancement may compensate for the poor ionization of the oxysterols; hence we have explored the possibility to quantify oxysterols without derivatization using nanoLC-ESI-MS. Non-derivatized oxysterols and nanoLC were however not compatible, due to persistent and large carry-over. This was attributed to the extended contribution of surface to volume ratio in such miniaturized systems and interactions with the materials of the nanoLC instrumentation (e.g. adsorption to the fused silica tubing). Two contemporary MS instruments (Q-Exactive™ hybrid quadrupole-Orbitrap and TSQ Quantiva™ triple quadrupole) were used. However, both the MS and MS/MS spectra of non-derivatized oxysterols were ambiguous and/or unrepeatable for both of the instruments employed. Derivatizing oxysterols is more cumbersome, but provides more selective and reliable results, and Girard derivatization+nanoLC-ESI-MS continues to be our recommended choice for measuring oxysterols in very limited samples. These investigations also indicate that extra care should be taken to remove lipids prior to nanoLC of other analytes, as adsorbed oxysterols, etc. can compromise analysis.


Subject(s)
Chromatography, Liquid/methods , Nanotechnology/methods , Spectrometry, Mass, Electrospray Ionization/methods , Sterols/analysis , Reference Standards , Solutions , Solvents
2.
J Lipid Res ; 55(7): 1531-6, 2014 07.
Article in English | MEDLINE | ID: mdl-24792927

ABSTRACT

Iso-octyl chain-hydroxylated oxysterols were determined in attomoles per 10,000 cells concentrations in 10,000-80,000 cultured pancreatic adenocarcinoma cells, using a sensitive, highly automated nano-LC-ESI-MS-based method. Identified oxysterols included 24S hydroxycholesterol (24S-OHC), 25 hydroxycholesterol (25-OHC), and 27 hydroxycholesterol (27-OHC), while 20S hydroxycholesterol and 22S hydroxycholesterol were not detected. Lower mass limit of quantification was 23 fg (65 amol) for 25-OHC and 27-OHC (100 times lower than our previous method) and 54 fg (135 amol) for 24S-OHC, after derivatization into Girard T hydrazones and online sample cleanup using simplified and robust automatic filtration and filter back flushing solid phase extraction LC/MS/MS. The instrument configuration was easily installed using a commercial nano-LC/MS system. Recoveries in spiked sample were 96, 97, and 77% for 24S-OHC, 25-OHC, and 27-OHC, with within- and between-day repeatabilities of 1-21% and 2-20% relative SD, respectively. The study demonstrates the potential of nano-LC in lipidomics/sterolomics.


Subject(s)
Mass Spectrometry/methods , Oxysterols/analysis , Cell Line, Tumor , Chromatography, Liquid/methods , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...