Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Aging ; 3(11): 1430-1445, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37946043

ABSTRACT

Tissues within an organism and even cell types within a tissue can age with different velocities. However, it is unclear whether cells of one type experience different aging trajectories within a tissue depending on their spatial location. Here, we used spatial transcriptomics in combination with single-cell ATAC-seq and RNA-seq, lipidomics and functional assays to address how cells in the male murine liver are affected by age-related changes in the microenvironment. Integration of the datasets revealed zonation-specific and age-related changes in metabolic states, the epigenome and transcriptome. The epigenome changed in a zonation-dependent manner and functionally, periportal hepatocytes were characterized by decreased mitochondrial fitness, whereas pericentral hepatocytes accumulated large lipid droplets. Together, we provide evidence that changing microenvironments within a tissue exert strong influences on their resident cells that can shape epigenetic, metabolic and phenotypic outputs.


Subject(s)
Epigenome , Transcriptome , Male , Mice , Animals , Transcriptome/genetics , Epigenome/genetics , Liver/metabolism , Hepatocytes/metabolism , Metabolome
2.
Mol Metab ; 66: 101626, 2022 12.
Article in English | MEDLINE | ID: mdl-36356831

ABSTRACT

OBJECTIVE: Nonalcoholic fatty liver disease (NAFLD) ranges from steatosis to nonalcoholic steatohepatitis (NASH), which often progresses to hepatocellular carcinoma (HCC) through a largely undefined mechanism. NASH and HCC depend on inflammatory signaling, whose master regulator is the NFκB transcription factor family, activated by canonical and non-canonical pathways. METHODS: Here, we investigated non-canonical NFκB-inducing kinase (NIK/MAP3K14) in metabolic NASH, NASH to HCC transition, and DEN-induced HCC. To this end, we performed dietary and chemical interventions in mice that were analyzed via single nucleus sequencing, gene expression and histochemical methods. Ultimately, we verified our mouse results in human patient samples. RESULTS: We revealed that hepatocyte-specific NIK deficiency (NIKLKO) ameliorated metabolic NASH complications and reduced hepatocarcinogenesis, independent of its role in the NFκB pathway. Instead, hepatic NIK attenuated hepatoprotective JAK2/STAT5 signaling that is a prerequisite for NASH and NASH to HCC progression in mice and humans. CONCLUSIONS: Our data suggest NIK-mediated inhibitory JAK2 phosphorylation at serine 633 that might be amenable for future therapeutic interventions in patients.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Non-alcoholic Fatty Liver Disease , Animals , Humans , Mice , Carcinoma, Hepatocellular/metabolism , Hepatocytes/metabolism , Janus Kinase 2/metabolism , Liver Neoplasms/metabolism , Non-alcoholic Fatty Liver Disease/metabolism , STAT5 Transcription Factor/metabolism , NF-kappaB-Inducing Kinase
3.
Neuron ; 106(6): 1009-1025.e10, 2020 06 17.
Article in English | MEDLINE | ID: mdl-32302532

ABSTRACT

Calorie-rich diets induce hyperphagia and promote obesity, although the underlying mechanisms remain poorly defined. We find that short-term high-fat-diet (HFD) feeding of mice activates prepronociceptin (PNOC)-expressing neurons in the arcuate nucleus of the hypothalamus (ARC). PNOCARC neurons represent a previously unrecognized GABAergic population of ARC neurons distinct from well-defined feeding regulatory AgRP or POMC neurons. PNOCARC neurons arborize densely in the ARC and provide inhibitory synaptic input to nearby anorexigenic POMC neurons. Optogenetic activation of PNOCARC neurons in the ARC and their projections to the bed nucleus of the stria terminalis promotes feeding. Selective ablation of these cells promotes the activation of POMC neurons upon HFD exposure, reduces feeding, and protects from obesity, but it does not affect food intake or body weight under normal chow consumption. We characterize PNOCARC neurons as a novel ARC neuron population activated upon palatable food consumption to promote hyperphagia.


Subject(s)
Arcuate Nucleus of Hypothalamus/physiology , Diet, High-Fat , Feeding Behavior/physiology , GABAergic Neurons/physiology , Hyperphagia , Obesity , Weight Gain/physiology , Animals , Arcuate Nucleus of Hypothalamus/cytology , Arcuate Nucleus of Hypothalamus/metabolism , GABAergic Neurons/metabolism , Mice , Neural Inhibition/physiology , Neurons/metabolism , Neurons/physiology , Optogenetics , Pro-Opiomelanocortin/metabolism , Protein Precursors/metabolism , Receptors, Opioid/metabolism , Septal Nuclei/physiology
4.
Cancers (Basel) ; 11(1)2018 Dec 27.
Article in English | MEDLINE | ID: mdl-30591653

ABSTRACT

Obesity promotes the development of numerous cancers, such as liver and colorectal cancers, which is at least partly due to obesity-induced, chronic, low-grade inflammation. In particular, the recruitment and activation of immune cell subsets in the white adipose tissue systemically increase proinflammatory cytokines, such as tumor necrosis factor α (TNFα) and interleukin-6 (IL-6). These proinflammatory cytokines not only impair insulin action in metabolic tissues, but also favor cancer development. Here, we review the current state of knowledge on how obesity affects inflammatory TNFα and IL-6 signaling in hepatocellular carcinoma and colorectal cancers.

SELECTION OF CITATIONS
SEARCH DETAIL
...