Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Biointerphases ; 15(3): 030801, 2020 06 02.
Article in English | MEDLINE | ID: mdl-32486650

ABSTRACT

The most common bulk acoustic wave device used in biosensing applications is the quartz crystal microbalance (QCM), in which a resonant pure shear acoustic wave is excited via electrodes on both major faces of a thin AT-cut quartz plate. For biosensing, the QCM is used to detect the capture of a target by a target-capture film. The sensitivity of the QCM is typically based solely on the detection of mechanical property changes, as electrical property change detection is limited by the electrode on its sensing surface. A modification of the QCM called the lateral field excited (LFE) QCM (LFE-QCM) has been developed with a bare sensing surface as both electrodes are now on a single face of the quartz plate. Compared to the QCM, the LFE-QCM exhibits significantly higher sensitivity to both electrical and mechanical property changes. This paper presents theoretical and experimental aspects of LFE-QCMs. In particular, the presence and strength of the usual and newfound LFE-QCM modes depend on the electrical properties of the film and/or sensing environment. This work also presents examples of experimental setups for measuring the response of an LFE-QCM, followed by results of LFE-QCMs used to detect liquid electrical and mechanical properties, chemical targets, and biological targets. Finally, details are given about the attachment of various target-capture films to the LFE-QCM surface to capture biomarkers associated with diseases such as cancer.


Subject(s)
Biosensing Techniques , Quartz Crystal Microbalance Techniques , Acoustics , Biomarkers/analysis , Electric Conductivity , Models, Theoretical
2.
Article in English | MEDLINE | ID: mdl-23475922

ABSTRACT

Recently, there has been interest in the fabrication of multiple quartz crystal microbalances (QCMs) on a single substrate to create a sensor array. However, such devices are ultimately subject to the limitations of the QCM configuration, requiring electrodes and wires on the sensing surface of the crystal substrate, resulting in a cumbersome arrangement that is unable to detect electrical property changes. The lateral-field-excited (LFE) sensor is a novel sensing device that only requires electrodes on the back side of the substrate. With a bare sensing surface, the LFE sensor is a better choice for implementing a sensor array. The purpose of this paper is to report on the fabrication and testing of two independent LFE devices on a single substrate. The individual LFE elements are shown to respond to both electrical and mechanical property changes, with minimal crosstalk between the LFE elements.

3.
Article in English | MEDLINE | ID: mdl-19406706

ABSTRACT

The most popular bulk acoustic wave (BAW) sensor is the quartz crystal microbalance (QCM), which has electrodes on both the top and bottom surfaces of an AT-cut quartz wafer. In the QCM, the exciting electric field is primarily perpendicular to the crystal surface, resulting in a thickness field excitation (TFE) of a resonant temperature compensated transverse shear mode (TSM). The TSM, however, can also be excited by lateral field excitation (LFE) in which electrodes are placed on one side of the wafer leaving a bare sensing surface exposed directly to a liquid or a chemi/bio selective layer allowing the detection of both mechanical and electrical property changes caused by a target analyte. The use of LFE sensors has motivated an investigation to identify other piezoelectric crystal orientations that can support temperature-compensated TSMs and operate efficiently at high frequencies resulting in increased sensitivity. In this work, theoretical search and experimental measurements are performed to identify the existence of high-frequency temperature-compensated TSMs in LiTaO(3). Prototype LFE LiTaO(3) sensors were fabricated and found to operate at frequencies in excess of 1 GHz and sensitively detect viscosity, conductivity, and dielectric constant changes in liquids.


Subject(s)
Acoustics/instrumentation , Lithium/chemistry , Micro-Electrical-Mechanical Systems/instrumentation , Oxides/chemistry , Tantalum/chemistry , Transducers , Equipment Design , Equipment Failure Analysis
4.
Article in English | MEDLINE | ID: mdl-16471447

ABSTRACT

Potassium niobate (KNbO3) supports the electromechanically active pure shear horizontal surface acoustic wave (SH-SAW) mode along Z-axis cylinder orientations, Euler angles (phi, 90 degrees, 0 degrees), in which two uncoupled wave solutions exist: a purely mechanical sagittal Rayleigh SAW and a piezoelectrically stiffened pure SH-SAW. Within this family of cuts, a maximum electromechanical coupling coefficient for the pure SH-SAW, K2 = 53%, is observed along (0 degrees, 90 degrees, 0 degrees). This pure SH-SAW orientation also has the maximum value of electromechanical coupling observed along rotated Y-cut X propagation directions, Euler angles (0 degrees, theta, 0 degrees). The use of the pure SH-SAW mode is attractive for liquid-sensing applications because the SH-SAW is modestly attenuated by the adjacent liquid, unlike the generalized SAW (GSAW), which has particle displacement normal to the surface. This work investigates propagation and excitation properties of the SH-SAW and the shear horizontal bulk acoustic wave (SH-BAW) on single crystal KNbO3, Euler angles (0 degrees, 90 degrees, 0 degrees). Interdigital transducer (IDT) arrays are analyzed using boundary element method (BEM) techniques, addressing IDT properties such as: power partitioning between the SH-SAW and SH-BAW, SH-BAW radiation as a function of wave vector direction and radiation angle, and overall IDT impedance. The percentage of SH-SAW power to total input power is above 98% for IDTs containing 1.5 to 5.5 wavelengths of active electrodes with surrounding metalized regions. For nonmetalized regions outside the IDT, the ratio drops to between 1 and 2%, showing the importance of an energy trapping structure for efficient SH-SAW excitation and propagation along this orientation. Simulated and experimental IDT admittance results are compared, verifying the validity of the analysis performed. The reported measurements on the frequency variation with temperature indicate that the orientation considered is temperature compensated at about 8 degrees C. The surface of the SH-SAW devices fabricated have been loaded with deionized water and showed additional 1.6 dB transmission loss with respect to the unloaded surface, verifying the suitability of the pure SH-SAW mode on KNbO3 for liquid sensor applications.

5.
Article in English | MEDLINE | ID: mdl-15600079

ABSTRACT

Lateral field excited (LFE) AT-cut quartz acoustic wave sensors in which the electrodes are located on the reference surface have been fabricated and tested in liquid environments. The sensing surface, which is opposite to the reference surface, is free allowing the electric field of the thickness shear mode (TSM) to penetrate into the liquid. This results in increased sensitivity to both mechanical and electrical property changes of the liquid. In the present paper, several 5-MHz LFE sensors with a range of electrode spacings were exposed to liquid environments in which the viscosity, relative permittivity, and conductivity were varied. The LFE sensors demonstrate sensitivity to viscosity that is more than twice that obtained for the standard quartz crystal microbalance (QCM), and sensitivity to relative permittivity and conductivity about 1.5 times that of the QCM sensors with modified electrodes. The present results clearly indicate that the LFE sensors may have a wide range of liquid phase applications in which sensitivity is crucial.

SELECTION OF CITATIONS
SEARCH DETAIL
...