Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 15(1): 3346, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38693125

ABSTRACT

Endurance exercise training is known to reduce risk for a range of complex diseases. However, the molecular basis of this effect has been challenging to study and largely restricted to analyses of either few or easily biopsied tissues. Extensive transcriptome data collected across 15 tissues during exercise training in rats as part of the Molecular Transducers of Physical Activity Consortium has provided a unique opportunity to clarify how exercise can affect tissue-specific gene expression and further suggest how exercise adaptation may impact complex disease-associated genes. To build this map, we integrate this multi-tissue atlas of gene expression changes with gene-disease targets, genetic regulation of expression, and trait relationship data in humans. Consensus from multiple approaches prioritizes specific tissues and genes where endurance exercise impacts disease-relevant gene expression. Specifically, we identify a total of 5523 trait-tissue-gene triplets to serve as a valuable starting point for future investigations [Exercise; Transcription; Human Phenotypic Variation].


Subject(s)
Gene Expression Regulation , Physical Conditioning, Animal , Animals , Humans , Rats , Transcriptome/genetics , Multifactorial Inheritance/genetics , Exercise/physiology , Male , Phenotype , Quantitative Trait Loci , Gene Expression Profiling
2.
Transplantation ; 106(7): 1376-1389, 2022 07 01.
Article in English | MEDLINE | ID: mdl-34923540

ABSTRACT

BACKGROUND: The International Society for Heart and Lung Transplant consensus panel notes that too little data exist regarding the role of non-HLA in allograft rejection. We developed a novel shotgun immunoproteomic approach to determine the identities and potential roles non-HLA play in antibody-mediated rejection (AMR) in heart transplant recipients. METHODS: Serum was collected longitudinally from heart transplant recipients experiencing AMR in the absence of donor-specific anti-HLA antibodies (n = 6) and matched no rejection controls (n = 7). Antidonor heart affinity chromatography columns were formed by recipient immunoglobulin G immobilization at transplantation, acute rejection, and chronic postrejection time points. Affinity chromatography columns were used to capture antigens from individual patient's donor heart biopsies collected at transplantation. Captured proteins were subjected to quantitative proteomic analysis and the longitudinal response was calculated. RESULTS: Overlap in antigen-specific response between AMR and non-AMR patients was only 8.3%. In AMR patients, a total of 155 non-HLAs were identified, with responses toward 43 high prevalence antigens found in ≥50% of patients. Immunofluorescence staining for representative high prevalence antigens demonstrated that their abundance increased at acute rejection, correlating with their respective non-HLA antibody response. Physiological changes in cardiomyocyte and endothelial cell function, following in vitro culture with patient immunoglobulin G, correlated with response toward several high prevalence antigens. CONCLUSIONS: This work demonstrates a novel high-throughput strategy to identify clinically relevant non-HLA from donor endomyocardial biopsy. Such a technique has the potential to improve understanding of longitudinal timing of antigen-specific responses and their cause and effect relationship in graft rejection.


Subject(s)
Heart Transplantation , Graft Rejection , HLA Antigens , Heart Transplantation/adverse effects , Humans , Immunoglobulin G , Proteomics , Tissue Donors
SELECTION OF CITATIONS
SEARCH DETAIL
...