Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Front Physiol ; 10: 1416, 2019.
Article in English | MEDLINE | ID: mdl-31849692

ABSTRACT

Skeletal muscle injury provokes a regenerative response, characterized by the de novo generation of myofibers that are distinguished by central nucleation and re-expression of developmentally restricted genes. In addition to these characteristics, myofiber cross-sectional area (CSA) is widely used to evaluate muscle hypertrophic and regenerative responses. Here, we introduce QuantiMus, a free software program that uses machine learning algorithms to quantify muscle morphology and molecular features with high precision and quick processing-time. The ability of QuantiMus to define and measure myofibers was compared to manual measurement or other automated software programs. QuantiMus rapidly and accurately defined total myofibers and measured CSA with comparable performance but quantified the CSA of centrally-nucleated fibers (CNFs) with greater precision compared to other software. It additionally quantified the fluorescence intensity of individual myofibers of human and mouse muscle, which was used to assess the distribution of myofiber type, based on the myosin heavy chain isoform that was expressed. Furthermore, analysis of entire quadriceps cross-sections of healthy and mdx mice showed that dystrophic muscle had an increased frequency of Evans blue dye+ injured myofibers. QuantiMus also revealed that the proportion of centrally nucleated, regenerating myofibers that express embryonic myosin heavy chain (eMyHC) or neural cell adhesion molecule (NCAM) were increased in dystrophic mice. Our findings reveal that QuantiMus has several advantages over existing software. The unique self-learning capacity of the machine learning algorithms provides superior accuracy and the ability to rapidly interrogate the complete muscle section. These qualities increase rigor and reproducibility by avoiding methods that rely on the sampling of representative areas of a section. This is of particular importance for the analysis of dystrophic muscle given the "patchy" distribution of muscle pathology. QuantiMus is an open source tool, allowing customization to meet investigator-specific needs and provides novel analytical approaches for quantifying muscle morphology.

2.
Worm ; 6(3-4): e1405212, 2017.
Article in English | MEDLINE | ID: mdl-29238627

ABSTRACT

Cell outgrowth is a hallmark of some non-migratory developing cells during morphogenesis. Understanding the mechanisms that control cell outgrowth not only increases our knowledge of tissue and organ development, but can also shed light on disease pathologies that exhibit outgrowth-like behavior. C. elegans is a highly useful model for the analysis of genes and the function of their respective proteins. In addition, C. elegans also has several cells and tissues that undergo outgrowth during development. Here we discuss the outgrowth mechanisms of nine different C. elegans cells and tissues. We specifically focus on how these cells and tissues grow outward and the interactions they make with their environment. Through our own identification, and a meta-analysis, we also identify gene families involved in multiple cell outgrowth processes, which defined potential C. elegans core components of cell outgrowth, as well as identify a potential stepwise cell behavioral cascade used by cells undergoing outgrowth.

3.
Sensors (Basel) ; 12(8): 10487-99, 2012.
Article in English | MEDLINE | ID: mdl-23112611

ABSTRACT

Bacterial pathogens pose an increasing food safety and bioterrorism concern. Current DNA detection methods utilizing sensitive nanotechnology and biosensors have shown excellent detection, but require expensive and time-consuming polymerase chain reaction (PCR) to amplify DNA targets; thus, a faster, more economical method is still essential. In this proof-of-concept study, we investigated the ability of a gold nanoparticle-DNA (AuNP-DNA) biosensor to detect non-PCR amplified genomic Salmonella enterica serovar Enteritidis (S. enteritidis) DNA, from pure or mixed bacterial culture and spiked liquid matrices. Non-PCR amplified DNA was hybridized into sandwich-like structures (magnetic nanoparticles/DNA/AuNPs) and analyzed through detection of gold voltammetric peaks using differential pulse voltammetry. Our preliminary data indicate that non-PCR amplified genomic DNA can be detected at a concentration as low as 100 ng/mL from bacterial cultures and spiked liquid matrices, similar to reported PCR amplified detection levels. These findings also suggest that AuNP-DNA biosensors are a first step towards a viable detection method of bacterial pathogens, in particular, for resource-limited settings, such as field-based or economically limited conditions. Future efforts will focus on further optimization of the DNA extraction method and AuNP-biosensors, to increase sensitivity at lower DNA target concentrations from food matrices comparable to PCR amplified DNA detection strategies.


Subject(s)
Biosensing Techniques/methods , DNA, Bacterial/analysis , DNA, Bacterial/isolation & purification , Food Microbiology/methods , Gold/chemistry , Metal Nanoparticles/chemistry , Salmonella enteritidis/isolation & purification , Biosensing Techniques/instrumentation , Food Microbiology/instrumentation , Salmonella enteritidis/genetics
4.
J Clin Invest ; 119(6): 1583-94, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19451692

ABSTRACT

Duchenne muscular dystrophy (DMD) is an X-linked, degenerative muscle disease that is exacerbated by secondary inflammation. Here, we characterized the immunological milieu of dystrophic muscle in mdx mice, a model of DMD, to identify potential therapeutic targets. We identified a specific subpopulation of cells expressing the Vbeta8.1/8.2 TCR that is predominant among TCR-beta+ T cells. These cells expressed high levels of osteopontin (OPN), a cytokine that promotes immune cell migration and survival. Elevated OPN levels correlated with the dystrophic process, since OPN was substantially elevated in the serum of mdx mice and muscle biopsies after disease onset. Muscle biopsies from individuals with DMD also had elevated OPN levels. To test the role of OPN in mdx muscle, mice lacking both OPN and dystrophin were generated and termed double-mutant mice (DMM mice). Reduced infiltration of NKT-like cells and neutrophils was observed in the muscle of DMM mice, supporting an immunomodulatory role for OPN in mdx muscle. Concomitantly, an increase in CD4+ and FoxP3+ Tregs was also observed in DMM muscle, which also showed reduced levels of TGF-beta, a known fibrosis mediator. These inflammatory changes correlated with increased strength and reduced diaphragm and cardiac fibrosis. These studies suggest that OPN may be a promising therapeutic target for reducing inflammation and fibrosis in individuals with DMD.


Subject(s)
Immune System Phenomena/immunology , Muscular Dystrophy, Animal/immunology , Muscular Dystrophy, Animal/metabolism , Osteopontin/metabolism , Transforming Growth Factor beta/immunology , Transforming Growth Factor beta/metabolism , Aging/physiology , Animals , Diaphragm/metabolism , Diaphragm/pathology , Fibrosis/immunology , Fibrosis/metabolism , Fibrosis/pathology , Gene Expression Regulation , Heart Diseases/metabolism , Heart Diseases/pathology , Humans , Mice , Mice, Inbred C57BL , Mice, Knockout , Muscular Dystrophy, Animal/pathology , Mutation/genetics , Osteopontin/deficiency , Osteopontin/genetics , Receptors, Antigen, T-Cell, alpha-beta/immunology , T-Lymphocytes/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...