Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 15(1): 5500, 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38951172

ABSTRACT

Cancer resistance to immune checkpoint inhibitors motivated investigations into leveraging the immunostimulatory properties of radiotherapy to overcome immune evasion and to improve treatment response. However, clinical benefits of radiotherapy-immunotherapy combinations have been modest. Routine concomitant tumor-draining lymph node irradiation (DLN IR) might be the culprit. As crucial sites for generating anti-tumor immunity, DLNs are indispensable for the in situ vaccination effect of radiotherapy. Simultaneously, DLN sparing is often not feasible due to metastatic spread. Using murine models of metastatic disease in female mice, here we demonstrate that delayed (adjuvant), but not neoadjuvant, DLN IR overcomes the detrimental effect of concomitant DLN IR on the efficacy of radio-immunotherapy. Moreover, we identify IR-induced disruption of the CCR7-CCL19/CCL21 homing axis as a key mechanism for the detrimental effect of DLN IR. Our study proposes delayed DLN IR as a strategy to maximize the efficacy of radio-immunotherapy across different tumor types and disease stages.


Subject(s)
Immune Checkpoint Inhibitors , Lymph Nodes , Animals , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Female , Mice , Lymph Nodes/immunology , Lymph Nodes/radiation effects , Lymph Nodes/pathology , Cell Line, Tumor , Immunotherapy/methods , Mice, Inbred C57BL , Lymphatic Irradiation , Disease Models, Animal , Combined Modality Therapy/methods , Humans , Receptors, CCR7/metabolism , Neoplasm Metastasis
2.
Semin Cancer Biol ; 98: 19-30, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38040401

ABSTRACT

Hypoxia in solid tumors is an important predictor of poor clinical outcome to radiotherapy. Both physicochemical and biological processes contribute to a reduced sensitivity of hypoxic tumor cells to ionizing radiation and hypoxia-related treatment resistances. A conventional low-dose fractionated radiotherapy regimen exploits iterative reoxygenation in between the individual fractions, nevertheless tumor hypoxia still remains a major hurdle for successful treatment outcome. The technological advances achieved in image guidance and highly conformal dose delivery make it nowadays possible to prescribe larger doses to the tumor as part of single high-dose or hypofractionated radiotherapy, while keeping an acceptable level of normal tissue complication in the co-irradiated organs at risk. However, we insufficiently understand the impact of tumor hypoxia to single high-doses of RT and hypofractionated RT. So-called FLASH radiotherapy, which delivers ionizing radiation at ultrahigh dose rates (> 40 Gy/sec), has recently emerged as an important breakthrough in the radiotherapy field to reduce normal tissue toxicity compared to irradiation at conventional dose rates (few Gy/min). Not surprisingly, oxygen consumption and tumor hypoxia also seem to play an intriguing role for FLASH radiotherapy. Here we will discuss the role of tumor hypoxia for radiotherapy in general and in the context of novel radiotherapy treatment approaches.


Subject(s)
Neoplasms , Tumor Hypoxia , Humans , Neoplasms/radiotherapy , Neoplasms/pathology , Radiation Dose Hypofractionation , Hypoxia , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...