Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Anal Bioanal Chem ; 415(9): 1657-1673, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36847795

ABSTRACT

The National Institute of Standards and Technology, which is the national metrology institute of the USA, assigns certified values to the mass fractions of individual elements in single-element solutions, and to the mass fractions of anions in anion solutions, based on gravimetric preparations and instrumental methods of analysis. The instrumental method currently is high-performance inductively coupled plasma optical emission spectroscopy for the single-element solutions, and ion chromatography for the anion solutions. The uncertainty associated with each certified value comprises method-specific components, a component reflecting potential long-term instability that may affect the certified mass fraction during the useful lifetime of the solutions, and a component from between-method differences. Lately, the latter has been evaluated based only on the measurement results for the reference material being certified. The new procedure described in this contribution blends historical information about between-method differences for similar solutions produced previously, with the between-method difference observed when a new material is characterized. This blending procedure is justified because, with only rare exceptions, the same preparation and measurement methods have been used historically: in the course of almost 40 years for the preparation methods, and of 20 years for the instrumental methods. Also, the certified values of mass fraction, and the associated uncertainties, have been very similar, and the chemistry of the solutions also is closely comparable within each series of materials. If the new procedure will be applied to future SRM lots of single-element or anion solutions routinely, then it is expected that it will yield relative expanded uncertainties that are about 20 % smaller than the procedure for uncertainty evaluation currently in use, and that it will do so for the large majority of the solutions. However, more consequential than any reduction in uncertainty, is the improvement in the quality of the uncertainty evaluations that derives from incorporating the rich historical information about between-method differences and about the stability of the solutions over their expected lifetimes. The particular values listed for several existing SRMs are given merely as retrospective illustrations of the application of the new method, not to suggest that the certified values or their associated uncertainties should be revised.

2.
Anal Chem ; 88(9): 4635-43, 2016 05 03.
Article in English | MEDLINE | ID: mdl-27032706

ABSTRACT

In recent years, microwave-induced combustion (MIC) has proved to be a robust sample preparation technique for difficult-to-digest samples containing high carbon content, especially for determination of halogens and sulfur. National Institute of Standards and Technology (NIST) has applied the MIC methodology in combination with isotope dilution analysis for sulfur determinations, representing the first-reported combination of this robust sample preparation methodology and high-accuracy quantification approach. Medium-resolution mode sector-field inductively coupled plasma mass spectrometry was invoked to avoid spectral interferences on the sulfur isotopes. The sample preparation and instrumental analysis scheme was used for the value assignment of total sulfur in Standard Reference Material (SRM) 2682c Subbituminous Coal (nominal mass fraction 0.5% sulfur). A description of the analytical procedures required is provided, along with metrological results, including an estimation of the overall method uncertainty (<1.5% relative expanded uncertainty) calculated using the IDMS measurement function and a Kragten spreadsheet approach.

3.
J Radioanal Nucl Chem ; 299(3): 1555-1563, 2014 Mar.
Article in English | MEDLINE | ID: mdl-26300575

ABSTRACT

A newly developed procedure for determination of arsenic by radiochemical neutron activation analysis (RNAA) was used to measure arsenic at four levels in SRM 955c Toxic Elements in Caprine Blood and at two levels in SRM 2668 Toxic Elements in Frozen Human Urine for the purpose of providing mass concentration values for certification. Samples were freeze-dried prior to analysis followed by neutron irradiation for 3 h at a fluence rate of 1×1014cm-2s-1. After sample dissolution in perchloric and nitric acids, arsenic was separated from the matrix by extraction into zinc diethyldithiocarbamate in chloroform, and 76As quantified by gamma-ray spectroscopy. Differences in chemical yield and counting geometry between samples and standards were monitored by measuring the count rate of a 77As tracer added before sample dissolution. RNAA results were combined with inductively coupled plasma - mass spectrometry (ICP-MS) values from NIST and collaborating laboratories to provide certified values of (10.81 ± 0.54) µg/kg and (213.1 ± 0.73) µg/kg for SRM 2668 Levels I and II, and certified values of (21.66 ± 0.73) µg/kg, (52.7 ± 1.1) µg/kg, and (78.8 ± 4.9) µg/kg for SRM 955c Levels 2, 3, and 4 respectively. Because of discrepancies between values obtained by different methods for SRM 955c Level 1, an information value of < 5 µg/kg was assigned for this material.

4.
Anal Chem ; 85(24): 11732-8, 2013 Dec 17.
Article in English | MEDLINE | ID: mdl-24187941

ABSTRACT

The National Institute of Standards and Technology (NIST), in collaboration with the National Institutes of Health (NIH), has developed a Standard Reference Material (SRM) to support technology development in metabolomics research. SRM 1950 Metabolites in Human Plasma is intended to have metabolite concentrations that are representative of those found in adult human plasma. The plasma used in the preparation of SRM 1950 was collected from both male and female donors, and donor ethnicity targets were selected based upon the ethnic makeup of the U.S. population. Metabolomics research is diverse in terms of both instrumentation and scientific goals. This SRM was designed to apply broadly to the field, not toward specific applications. Therefore, concentrations of approximately 100 analytes, including amino acids, fatty acids, trace elements, vitamins, hormones, selenoproteins, clinical markers, and perfluorinated compounds (PFCs), were determined. Value assignment measurements were performed by NIST and the Centers for Disease Control and Prevention (CDC). SRM 1950 is the first reference material developed specifically for metabolomics research.


Subject(s)
Blood Chemical Analysis/standards , Metabolomics/standards , Adult , Amino Acids/blood , Biomarkers/blood , Carotenoids/blood , Fatty Acids/blood , Female , Humans , Male , National Institutes of Health (U.S.) , Reference Standards , United States , Vitamins/blood
5.
Anal Bioanal Chem ; 405(13): 4579-88, 2013 May.
Article in English | MEDLINE | ID: mdl-23479125

ABSTRACT

The potential effect of spectral interference on the accurate measurement of the cadmium (Cd) mass fraction in fortified breakfast cereal and a variety of dietary supplement materials using inductively coupled plasma quadrupole mass spectrometry was studied. The materials were two new standard reference materials (SRMs)--SRM 3233 Fortified Breakfast Cereal and SRM 3532 Calcium Dietary Supplement--as well as several existing materials--SRM 3258 Bitter Orange Fruit, SRM 3259 Bitter Orange Extract, SRM 3260 Bitter Orange-containing Solid Oral Dosage Form, and SRM 3280 Multivitamin/Multielement Tablets. Samples were prepared for analysis using the method of isotope dilution and measured using various operating and sample introduction configurations including standard mode, collision cell with kinetic energy discrimination mode, and standard mode with sample introduction via a desolvating nebulizer system. Three isotope pairs, (112)Cd/(111)Cd, (113)Cd/(111)Cd, and (114)Cd/(111)Cd, were measured. Cadmium mass fraction results for the unseparated samples of each material, measured using the three instrument configurations and isotope pairs, were compared to the results obtained after the matrix was removed via chemical separation using anion exchange chromatography. In four of the six materials studied, measurements using the standard mode with sample introduction via the desolvating nebulizer gave results for the unseparated samples quantified with the (112)Cd/(111)Cd isotope pair that showed a positive bias relative to the matrix-separated samples, which indicated a persistent inference at m/z112 with this configuration. Use of the standard mode, without the desolvating nebulizer, also gave results that showed a positive bias for the unseparated samples quantified with the (112)Cd/(111)Cd isotope pair in three of the materials studied. Collision cell/kinetic energy discrimination mode, however, was very effective for reducing spectral interference for Cd in all of the materials and isotope pairs studied, except in the multivitamin/multielement matrix (SRM 3280) where the large corrections for known isobaric interferences or unidentified interferences compromised the accuracy. For SRM 3280, matrix separation provided the best method to achieve accurate measurement of Cd.


Subject(s)
Artifacts , Cadmium/analysis , Dietary Supplements/analysis , Edible Grain/chemistry , Food, Fortified/analysis , Spectrophotometry, Atomic/standards , Cadmium/standards , Humans , Indicator Dilution Techniques , Isotopes , Reference Standards , Reference Values , Reproducibility of Results , Vitamins/chemistry
6.
Appl Spectrosc ; 60(3): 254-60, 2006 Mar.
Article in English | MEDLINE | ID: mdl-16608567

ABSTRACT

Reference spectra of ammonia from four sources are compared. Low-resolution spectra (i.e., spectra for which the spectrometer resolution is numerically greater than the full-width at half-height of the rotational lines) were obtained from the Environmental Protection Agency (EPA) web site and from Infrared Analysis, Inc. High-resolution (0.12 cm-1) spectra were obtained from the National Institute for Standards and Technology (NIST) and Pacific Northwest National Laboratory (PNNL). Two protocols were used to validate the EPA and Infrared Analysis spectra, with one requiring that Beer's law be obeyed by the low-resolution spectrum and the other that Beer's law be obeyed by the high-resolution spectrum. In all cases, the second protocol gave a significantly better spectral match. It is shown that the path-integrated concentrations for the low-resolution reference spectra were in error by as little as 4% to as much as an order of magnitude, presumably because of the effect of adsorption on the cell walls. Measured absorptivities of the NIST and PNNL spectra were different by approximately 2.6% and it is believed that the effect of adsorption on these spectra is small. When the same protocols were used to test the reference spectrum of methane, the calculated path-integrated concentration was only approximately 2% different from the one that was calculated from the NIST reference spectrum, suggesting that the data processing protocols provide accurate data.


Subject(s)
Ammonia/analysis , Environmental Monitoring/methods , Spectrophotometry, Infrared/methods , Reference Standards , Reproducibility of Results , United States , United States Environmental Protection Agency , Volatilization
7.
J Res Natl Inst Stand Technol ; 101(2): 155-164, 1996.
Article in English | MEDLINE | ID: mdl-27805122

ABSTRACT

An ion exchange-gravimetric method, previously developed as a National Committee for Clinical Laboratory Standards (NCCLS) reference method for the determination of sodium in human serum, has been re-evaluated and improved. Sources of analytical error in this method have been examined more critically and the overall uncertainties decreased. Additionally, greater accuracy and repeatability have been achieved by the application of this definitive method to a sodium chloride reference material. In this method sodium in serum is ion-exchanged, selectively eluted and converted to a weighable precipitate as Na2SO4. Traces of sodium eluting before or after the main fraction, and precipitate contaminants are determined instrumentally. Co-precipitating contaminants contribute less than 0.1 % while the analyte lost to other eluted ion-exchange fractions contributes less than 0.02 % to the total precipitate mass. With improvements, the relative expanded uncertainty (k = 2) of the method, as applied to serum, is 0.3 % to 0.4 % and is less than 0.1 % when applied to a sodium chloride reference material.

SELECTION OF CITATIONS
SEARCH DETAIL
...