Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Rev Sci Instrum ; 85(8): 085006, 2014 Aug.
Article in English | MEDLINE | ID: mdl-25173305

ABSTRACT

A fully integrated low noise superconducting quantum interference device (SQUID) in a magnetometer configuration is presented. An intrinsic high voltage responsivity as high as 500 µV/Φ0 has been obtained by introducing a resonance in the voltage - magnetic flux characteristic. This resonance is induced by an integrated superconducting coil surrounding the pick-up coil and connected to one end of the SQUID output. The SQUID magnetometer exhibits a spectral density of magnetic field noise as low as 3 fT/Hz(1/2). In order to verify the suitability of the magnetometer, measurements of bandwidth and slew rate have been performed and compared with those of the same device without the resonance and with additional positive feedback. Due to their good characteristics such devices can be employed in a large number of applications including biomagnetism.

2.
J Nanosci Nanotechnol ; 12(9): 7468-72, 2012 Sep.
Article in English | MEDLINE | ID: mdl-23035497

ABSTRACT

In this paper, Superconducting QUantum Interference Devices (SQUIDs) based on single layer Nb nanobridge Josephson junctions are described. Devices, with loop area ranging from 4 to 0.5 microm2, have been patterned by Electron Beam Lithography (EBL) in a 20 nm thick Nb layer, achieving a responsivity of about 30 microA/phi0. Magnetization measurements have been performed via switching current measurements at a temperature T = 4.2 K. Preliminary detection of Silica-magnetite (Fe3O4-SiO2) core/shell nanoparticle cluster has been proven.

3.
Rev Sci Instrum ; 82(1): 013901, 2011 Jan.
Article in English | MEDLINE | ID: mdl-21280839

ABSTRACT

An integrated ultrahigh sensitive current amplifier based on a niobium dc superconducting quantum interference device (SQUID) has been developed. The sensor design is based on a multiturn signal coil coupled to a suitable SQUID magnetometer. The signal coil consists of 60 square niobium turns tightly coupled to a superconducting flux transformer of a SQUID magnetometer. The primary coil (pick-up coil) of the flux transformer has been suitably designed in order to accommodate the multiturn input coil. It has a side length of 10 mm and a width of 2.4 mm. In such a way we have obtained a signal current to magnetic flux transfer coefficient (current sensitivity) as low as 62 nA∕Φ(0). The sensor has been characterized in liquid helium by using a direct coupling low noise readout electronic and a standard modulated electronic in flux locked loop configuration for the noise measurements. Beside the circuit complexity, the sensor has exhibited a smooth and free resonance voltage-flux characteristic guaranteeing a reliable and a stable working operation. Considering a SQUID magnetic flux noise of S(Φ)(1∕2) = 1.8 µΦ(0)∕Hz(1∕2) at T = 4.2 K, a current noise as low as 110 fA∕Hz(1∕2) is obtained. Such a value is about a factor two less than the noise of other SQUIDs of the same category. As an application, Nyquist noise measurements of integrated test resistors using the current sensing noise thermometer technique are reported. Due to its high performance such a sensor can be employed in all applications requiring an extremely current sensitivity like the readout of the gravitational wave detectors and the current sensing noise thermometry.


Subject(s)
Electric Conductivity , Magnetics/instrumentation
4.
Nanotechnology ; 19(27): 275501, 2008 Jul 09.
Article in English | MEDLINE | ID: mdl-21828707

ABSTRACT

An integrated magnetic nanosensor based on a niobium dc SQUID (superconducting quantum interference device) for nanoscale applications is presented. The sensor, having a washer shape with a hole of 200 nm and two Josephson-Dayem nanobridges of 80 nm × 100 nm, consists of a Nb(30 nm)/Al(30 nm) bilayer patterned by electron beam lithography (EBL) and shaped by lift-off and reactive ion etch (RIE) processes. The presence of the niobium coils, integrated on-chip and tightly coupled to the SQUID, allows us to easily excite the sensor in order to get the voltage-flux characteristics and to flux bias the SQUID at its optimal point. The measurements were performed at liquid helium temperature. A voltage swing of 75 µV and a maximum voltage-flux transfer coefficient (responsivity) as high as 1 mV/Φ(0) were directly measured from the voltage-flux characteristic. The noise measurements were performed in open loop mode, biasing the SQUID with a dc magnetic flux at its maximum responsivity point and using direct-coupled low-noise readout electronics. A white magnetic flux noise spectral density as low as 2.5 µΦ(0) Hz(-1/2) was achieved, corresponding to a magnetization or spin sensitivity in units of the Bohr magneton of 100 spin Hz(-1/2). Possible applications of this nanosensor can be envisaged in magnetic detection of nanoparticles and small clusters of atoms and molecules, in the measurement of nanoobject magnetization, and in quantum computing.

SELECTION OF CITATIONS
SEARCH DETAIL
...