Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 29(19): 29813-29827, 2021 Sep 13.
Article in English | MEDLINE | ID: mdl-34614719

ABSTRACT

Controlling the wavefront of an extreme ultraviolet (XUV) high-order harmonic beam during the generation process offers the capability of modifying the beam properties without resorting to any XUV optics. By characterizing the XUV intensity profile and wavefront, we quantitatively retrieve both the size and the position of the waist of each harmonic generated in an argon jet. We show that optics-free focusing can occur under specific generating conditions leading to XUV focii of micrometer size. We also demonstrate that each focus is located at distinct longitudinal positions. Using this remarkable XUV wavefront control combined with near focus spatial selection, we experimentally demonstrate efficient and adjustable spectral filtering of the XUV beam, along with a strong rejection of the fundamental beam, without using any XUV optics. The experimental results are compared with simulations providing the impact of the filtering on the temporal profile of the XUV field. It shows that the attosecond structure is preserved and that the beam is more homogeneous after the filtering, thereby reducing the longitudinal focii shift. This is a major step to achieve high XUV intensity and probing ultrafast processes with an improved resolution.

2.
Rev Sci Instrum ; 91(10): 105104, 2020 Oct 01.
Article in English | MEDLINE | ID: mdl-33138551

ABSTRACT

We present the Aurore platform for ultrafast sciences. This platform is based on a unique 20 W, 1 kHz, 26 fs Ti:sapphire laser system designed for reliable operation and high intensity temporal contrast. The specific design ensures the high stability in terms of pulse duration, energy, and beam pointing necessary for extended experimental campaigns. The laser supplies 5 different beamlines, all dedicated to a specific field: attosecond science (Aurore 1), ultrafast phase transitions in solids (Aurore 2 and 3), ultrafast luminescence in solids (Aurore 4), and femtochemistry (Aurore 5). The technical specifications of these five beamlines are described in detail, and examples of the recent results are given.

3.
J Chem Phys ; 151(17): 174305, 2019 Nov 07.
Article in English | MEDLINE | ID: mdl-31703511

ABSTRACT

We report benchmark results for dissociative photoionization (DPI) spectroscopy and dynamics of the NO molecule in the region of the σ* shape resonance in the ionization leading to the NO+(c3Π) ionic state. The experimental study combines well characterized extreme ultraviolet (XUV) circularly polarized synchrotron radiation, delivered at the DESIRS beamline (SOLEIL), with ion-electron coincidence 3D momentum spectroscopy. The measured (N+, e) kinetic energy correlation diagrams reported at four discrete photon energies in the extended 23-33 eV energy range allow for resolving the different active DPI reactions and underline the importance of spectrally resolved studies using synchrotron radiation in the context of time-resolved studies where photoionization is induced by broadband XUV attosecond pulses. In the dominant DPI reaction which leads to the NO+(c3Π) ionic state, photoionization dynamics across the σ* shape resonance are probed by molecular frame photoelectron angular distributions where the parallel and perpendicular transitions are highlighted, as well as the circular dichroism CDAD(θe) in the molecular frame. The latter also constitute benchmark references for molecular polarimetry. The measured dynamical parameters are well described by multichannel Schwinger configuration interaction calculations. Similar results are obtained for the DPI spectroscopy of highly excited NO+ electronic states populated in the explored XUV photon energy range.

4.
Faraday Discuss ; 194: 161-183, 2016 12 16.
Article in English | MEDLINE | ID: mdl-27853775

ABSTRACT

Due to the intimate anisotropic interaction between an XUV light field and a molecule resulting in photoionization (PI), molecular frame photoelectron angular distributions (MFPADs) are most sensitive probes of both electronic/nuclear dynamics and the polarization state of the ionizing light field. Consequently, they encode the complex dipole matrix elements describing the dynamics of the PI transition, as well as the three normalized Stokes parameters s1, s2, s3 characterizing the complete polarization state of the light, operating as molecular polarimetry. The remarkable development of advanced light sources delivering attosecond XUV pulses opens the perspective to visualize the primary steps of photochemical dynamics in time-resolved studies, at the natural attosecond to few femtosecond time-scales of electron dynamics and fast nuclear motion. It is thus timely to investigate the feasibility of measurement of MFPADs when PI is induced e.g., by an attosecond pulse train (APT) corresponding to a comb of discrete high-order harmonics. In the work presented here, we report MFPAD studies based on coincident electron-ion 3D momentum imaging in the context of ultrafast molecular dynamics investigated at the PLFA facility (CEA-SLIC), with two perspectives: (i) using APTs generated in atoms/molecules as a source for MFPAD-resolved PI studies, and (ii) taking advantage of molecular polarimetry to perform a complete polarization analysis of the harmonic emission of molecules, a major challenge of high harmonic spectroscopy. Recent results illustrating both aspects are reported for APTs generated in unaligned SF6 molecules by an elliptically polarized infrared driving field. The observed fingerprints of the elliptically polarized harmonics include the first direct determination of the complete s1, s2, s3 Stokes vector, equivalent to (ψ, ε, P), the orientation and the signed ellipticity of the polarization ellipse, and the degree of polarization P. They are compared to so far incomplete results of XUV optical polarimetry. We finally discuss the comparison between the outcomes of photoionization and high harmonic spectroscopy for the description of molecular photodynamics.

5.
J Chem Phys ; 139(4): 044311, 2013 Jul 28.
Article in English | MEDLINE | ID: mdl-23901984

ABSTRACT

We report a combined experimental and theoretical study of photoionization (PI) of the NO2 molecule into the NO2(+) (X (1)Σg(+)) ground state and the photodissociation of NO2 into the NO(+)((1)Σ(+)) + O(-)((2)P) ion pair. These processes were induced by 10.9 eV-13 eV synchrotron radiation and the products were detected using electron-ion or O(-)-NO(+) coincident momentum spectroscopy. The results demonstrate the strong influence of [R(∗)(4b2)(-1), nlα(i), v2(')] Rydberg states vibrationally resolved in the v2(') bending modes for both processes. In particular, we emphasize two regions around 11.5 eV and 12.5 eV that were studied in more detail for their relevance to 400 nm multiphoton ionization induced by femtosecond pulses. The photoelectron energy spectra and asymmetry parameters support the existence of two PI mechanisms, as probed with the help of fixed-nuclei frozen-core Hartree-Fock calculations. We found significant deviations from Franck-Condon ionization predictions which may be assigned to vibronic coupling of NO2(∗) states such as that induced by a conical intersection. The limited agreement between theory and experiment, even for the non-resonant processes, indicates the need for calculations that go beyond the approximations used in the current study. Ion pair formation leads to strong vibrational and rotational excitation of the NO(+)((1)Σ(+),v) product, with an ion fragment angular anisotropy depending on both the v2(') bending quantum number of the excited parent molecule and the v vibrational level of the fragment.

SELECTION OF CITATIONS
SEARCH DETAIL
...