Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Pulm Med ; 22(1): 303, 2022 Aug 08.
Article in English | MEDLINE | ID: mdl-35941624

ABSTRACT

BACKGROUND: Hospital work environment contains various biological and chemical exposures that can affect indoor air quality and have impact on respiratory health of the staff. The objective of this study was to investigate potential effects of occupational exposures on the risk of respiratory symptoms and lung function in hospital work, and to evaluate potential interaction between smoking and occupational exposures. METHODS: We conducted a cross-sectional study of 228 staff members in a hospital and 228 employees of an office building as the reference group in Shiraz, Iran. All subjects completed a standardized ATS respiratory questionnaire and performed a spirometry test. RESULTS: In Poisson regression, the adjusted prevalence ratios (aPR) among the hospital staff were elevated for cough (aPR 1.90, 95% CI 1.15, 3.16), phlegm production (aPR 3.21, 95% CI 1.63, 6.32), productive cough (aPR 2.83, 95% CI 1.48, 5.43), wheezing (aPR 3.18, 95% CI 1.04, 9.66), shortness of breath (aPR 1.40, 95% CI 0.93, 2.12), and chest tightness (aPR 1.73, 95% CI 0.73, 4.12). Particularly laboratory personnel experienced increased risks of most symptoms. In linear regression adjusting for confounding, there were no significant differences in lung function between the hospital and office workers. There was an indication of synergism between hospital exposures and current smoking on FEV1/FVC% (interaction term ß = - 5.37, 95% CI - 10.27, - 0.47). CONCLUSIONS: We present significant relations between hospital work, especially in laboratories, and increased risks of respiratory symptoms. Smoking appears to enhance these effects considerably. Our findings suggest that policymakers should implement evidence-based measures to prevent these occupational exposures.


Subject(s)
Occupational Diseases , Occupational Exposure , Cough/epidemiology , Cross-Sectional Studies , Hospitals , Humans , Lung , Occupational Diseases/epidemiology , Occupational Exposure/adverse effects , Personnel, Hospital
2.
Environ Monit Assess ; 193(8): 521, 2021 Jul 27.
Article in English | MEDLINE | ID: mdl-34313867

ABSTRACT

Hospitals host vulnerable people with potentially enhanced sensitivity to air pollutants. We measured particulate matter (PM) including PM1, PM2.5, and PM10 with a portable device in a hospital, a nearby reference building, and ambient air in Shiraz, Iran. Indoor/outdoor (I/O) ratio values were calculated to infer on the origin of size-fractioned PM. The mean hospital indoor concentrations of PM2.5 and PM10 (4.7 and 38.7 µg/m3, respectively) but not PM1 were higher than in the reference building and lower than in ambient air. The highest hospital PM10 mean concentrations were found in the radiotherapy ward (77.5 µg/m3) and radiology ward (70.4 µg/m3) while the lowest were found in the bone marrow transplantation (BMT) ward (18.5 µg/m3) and cardiac surgery ward (19.8 µg/m3). The highest PM2.5 concentrations were found in the radiology (8.7 µg/m3) and orthopaedic wards (7.7 µg/m3) while the lowest were found in the BMT ward (2.8 µg/m3) and cardiac surgery ward (2.8 µg/m3). The I/O ratios and the timing of peak concentrations during the day (7 a.m. to 4 p.m.) indicated the main roles of outdoor air and human activity on the indoor levels. These suggest the need for mechanical ventilation with PM control for a better indoor air quality (IAQ) in the hospital.


Subject(s)
Air Pollutants , Air Pollution, Indoor , Air Pollutants/analysis , Air Pollution, Indoor/analysis , Environmental Monitoring , Hospitals, Urban , Humans , Iran , Particle Size , Particulate Matter/analysis
3.
Environ Monit Assess ; 191(2): 50, 2019 Jan 05.
Article in English | MEDLINE | ID: mdl-30612195

ABSTRACT

The ambient air of hospitals contains a wide range of biological and chemical pollutants. Exposure to these indoor pollutants can be hazardous to the health of hospital staff. This study aims to evaluate the factors affecting indoor air quality and their effect on the respiratory health of staff members in a busy Iranian hospital. We surveyed 226 hospital staff as a case group and 222 office staff as a control group. All the subjects were asked to fill in a standard respiratory questionnaire. Pulmonary function parameters were simultaneously measured via a spirometry test. Environmental measurements of bio-aerosols, particulate matter, and volatile organic compounds in the hospital and offices were conducted. T-tests, chi-square tests, and multivariable logistic regressions were used to analyze the data. The concentration of selected air pollutants measured in the hospital wards was more than those in the administrative wards. Parameters of pulmonary functions were not statistically significant (p > 0.05) between the two groups. However, respiratory symptoms such as coughs, phlegm, phlegmatic coughs, and wheezing were more prevalent among the hospital staff. Laboratory staff members were more at risk of respiratory symptoms compared to other occupational groups in the hospital. The prevalence of sputum among nurses was significant, and the odds ratio for the presence of phlegm among nurses was 4.61 times greater than office staff (p = 0.002). The accumulation of indoor pollutants in the hospital environment revealed the failure of hospital ventilation systems. Hence, the design and implementation of an improved ventilation system in the studied hospital is recommended.


Subject(s)
Air Pollution, Indoor/analysis , Environmental Exposure/statistics & numerical data , Respiratory Tract Diseases/epidemiology , Aerosols , Air Conditioning , Air Pollutants/analysis , Air Pollution, Indoor/statistics & numerical data , Environmental Monitoring , Humans , Iran/epidemiology , Medical Staff, Hospital , Particulate Matter/analysis , Volatile Organic Compounds/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...