Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 105
Filter
1.
Am J Clin Exp Urol ; 12(2): 52-63, 2024.
Article in English | MEDLINE | ID: mdl-38736617

ABSTRACT

Chronic prostatitis/chronic pelvic pain syndrome (CP/CPSS) is a debilitating condition characterized by prostate inflammation, pain and urinary symptoms. The immune system's response to self-antigens is a contributing factor to CP/CPSS. In this review, we examine the use of experimental autoimmune prostatitis (EAP) in rodents to model salient features of autoimmune mediated CP/CPSS. By exploring etiological factors, immunological mechanisms, and emerging therapeutic strategies, our aim is to enhance our understanding of CP/CPSS pathogenesis and promote the development of strategies to test innovative interventions using the EAP pre-clinical model.

2.
Front Cell Infect Microbiol ; 14: 1346087, 2024.
Article in English | MEDLINE | ID: mdl-38736751

ABSTRACT

Epithelial cells form a resilient barrier and orchestrate defensive and reparative mechanisms to maintain tissue stability. This review focuses on gut and airway epithelia, which are positioned where the body interfaces with the outside world. We review the many signaling pathways and mechanisms by which epithelial cells at the interface respond to invading pathogens to mount an innate immune response and initiate adaptive immunity and communicate with other cells, including resident microbiota, to heal damaged tissue and maintain homeostasis. We compare and contrast how airway and gut epithelial cells detect pathogens, release antimicrobial effectors, collaborate with macrophages, Tregs and epithelial stem cells to mount an immune response and orchestrate tissue repair. We also describe advanced research models for studying epithelial communication and behaviors during inflammation, tissue injury and disease.


Subject(s)
Homeostasis , Immunity, Innate , Intestinal Mucosa , Humans , Intestinal Mucosa/microbiology , Intestinal Mucosa/immunology , Intestinal Mucosa/metabolism , Animals , Respiratory Mucosa/microbiology , Respiratory Mucosa/immunology , Epithelial Cells/microbiology , Signal Transduction , Adaptive Immunity , Macrophages/immunology , Macrophages/microbiology , Host-Pathogen Interactions
3.
Proc Natl Acad Sci U S A ; 121(3): e2317668121, 2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38194455

ABSTRACT

Orofacial clefts of the lip and palate are widely recognized to result from complex gene-environment interactions, but inadequate understanding of environmental risk factors has stymied development of prevention strategies. We interrogated the role of DNA methylation, an environmentally malleable epigenetic mechanism, in orofacial development. Expression of the key DNA methyltransferase enzyme DNMT1 was detected throughout palate morphogenesis in the epithelium and underlying cranial neural crest cell (cNCC) mesenchyme, a highly proliferative multipotent stem cell population that forms orofacial connective tissue. Genetic and pharmacologic manipulations of DNMT activity were then applied to define the tissue- and timing-dependent requirement of DNA methylation in orofacial development. cNCC-specific Dnmt1 inactivation targeting initial palate outgrowth resulted in OFCs, while later targeting during palatal shelf elevation and elongation did not. Conditional Dnmt1 deletion reduced cNCC proliferation and subsequent differentiation trajectory, resulting in attenuated outgrowth of the palatal shelves and altered development of cNCC-derived skeletal elements. Finally, we found that the cellular mechanisms of cleft pathogenesis observed in vivo can be recapitulated by pharmacologically reducing DNA methylation in multipotent cNCCs cultured in vitro. These findings demonstrate that DNA methylation is a crucial epigenetic regulator of cNCC biology, define a critical period of development in which its disruption directly causes OFCs, and provide opportunities to identify environmental influences that contribute to OFC risk.


Subject(s)
Cleft Lip , Cleft Palate , Animals , Mice , Cleft Lip/genetics , DNA Methylation , Cleft Palate/genetics , Neural Crest , DNA Modification Methylases , Cell Proliferation
4.
Am J Clin Exp Urol ; 11(1): 59-68, 2023.
Article in English | MEDLINE | ID: mdl-36923725

ABSTRACT

Prostatic inflammation and prostatic fibrosis are associated with lower urinary tract dysfunction in men. Prostatic inflammation arising from a transurethral uropathogenic E. coli infection is sufficient to increase prostatic collagen content in male mice. It is not known whether and how the sequence, duration and chronology of prostatic infection influence urinary function, prostatic inflammation and collagen content. We placed a transurethral catheter into adult male C57BL/6J mice to deliver uropathogenic E. coli UTI189 two-weeks prior to study endpoint (to evaluate the short-term impact of infection), 10-weeks prior to study endpoint (to evaluate the long-term impact of infection), or two-, six-, and ten-weeks prior to endpoint (to evaluate the impact of repeated intermittent infection). Mice were catheterized the same number of times across all experimental groups and instilled with sterile saline when not instilled with E. coli to control for the variable of catheterization. We measured bacterial load in free catch urine, body weight and weight of bladder and dorsal prostate; prostatic density of leukocytes, collagen and procollagen 1A1 producing cells, and urinary function. Transurethral E. coli instillation caused more severe and persistent bacteriuria in mice with a history of one or more transurethral instillations of sterile saline or E. coli. Repeated intermittent infections resulted in a greater relative bladder wet weight than single infections. However, voiding function, as measured by the void spot assay, and the density of collagen and ProCOL1A1+ cells in dorsal prostate tissue sections did not significantly differ among infection groups. The density of CD45+ leukocytes was greater in the dorsal prostate of mice infected two weeks prior to study endpoint but not in other infection groups compared to uninfected controls.

5.
J Pathol ; 260(2): 177-189, 2023 06.
Article in English | MEDLINE | ID: mdl-36825524

ABSTRACT

Benign prostatic hyperplasia (BPH) occurs progressively with aging in men and drives deteriorating symptoms collectively known as lower urinary tract symptoms (LUTS). Age-associated changes in circulating steroid hormones, and prostate inflammation have been postulated in the etiology of BPH/LUTS. The link between hormones and inflammation in the development of BPH/LUTS is conflicting because they may occur independently or as sequential steps in disease pathogenesis. This study aimed to decipher the prostatic immune landscape in a mouse model of lower urinary tract dysfunction (LUTD). Steroid hormone imbalance was generated by the surgical implantation of testosterone (T) and estradiol (E2) pellets into male C57BL/6J mice and gene expression analysis was performed on ventral prostates (VPs). These experiments identified an increase in the expression of macrophage markers and Spp1/osteopontin (OPN). Localization studies of OPN pinpointed that OPN+ macrophages travel to the prostate lumen and transition into lipid-accumulating foam cells. We also observed a significant increase in the number of tissue macrophages in the VP which was prevented in OPN-knockout (OPN-KO) mice. In contrast, mast cells, but not macrophages, were significantly elevated in the dorsal prostate of T + E2-treated mice which was diminished in OPN-KO mice. Steroid hormone implantation progressively increased urinary frequency, which was ameliorated in OPN-KO mice. Our study underscores the role of age-associated steroid hormone imbalances as a mechanism of expanding the prostatic macrophage population, their luminal translocation, and foam cell differentiation. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Subject(s)
Prostate , Prostatic Hyperplasia , Humans , Male , Mice , Animals , Prostate/pathology , Prostatic Hyperplasia/pathology , Osteopontin/genetics , Osteopontin/metabolism , Mice, Inbred C57BL , Testosterone , Inflammation , Cell Differentiation
6.
Theriogenology ; 189: 70-76, 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-35732098

ABSTRACT

The present study evaluated expression patterns of chemokine (C-C motif) ligand 2 gene/Monocyte chemoattractant protein-1 gene (CCL2/MCP-1), prostaglandin F2 alpha receptor gene (PTGFR) and immediate early genes including nuclear receptor subfamily 4, group A, member 1 (NR4A1), early growth response 1 (EGR1) and FBJ murine osteosarcoma viral oncogene homolog (FOS) in cells of the bovine corpus luteum after intrauterine infusion of a low dose of prostaglandin F2α (PGF2A) aimed at enhancing our understanding of the mechanisms of luteolysis. Holstein dairy cows were superovulated (>6 corpora lutea [CL]) and on day 9 of the estrous cycle were infused with a low dose of PGF2A (0.5 mg PGF2A in 0.25 ml phosphate buffered saline) into the greater curvature of the uterine horn ipsilateral to the CL. Ultrasound-guided biopsy samples of different CL were collected at 0 min, 15 min, 30 min, 1h, 2h and 6h after PGF2A infusion. Expression profiles and localization of mRNA for PTGFR, CCL2/MCP-1, and immediate early genes (NR4A1, EGR1 and FOS), were investigated by using qPCR and in situ hybridization. The concentrations of early response genes including FOS, NR4A1, and EGR1 exhibited the greatest increase at 30 min after PGF2A, compared to other time points. Expression profile of CCL2 mRNA increased gradually after intrauterine infusion of PGF2A with maximal up-regulation for CCL2 at 6h. Abundance of PTGFR mRNA only increased at 15 min and significantly decreased at 6h, compared to 0 min. Cellular localizations of all studied genes except CCL2 (primarily localized to apparent immune cells) were predominantly visualized in large luteal cells. Interestingly, early response genes demonstrated a changing profile in cellular localization with initial responses appearing to be in both large luteal cells and endothelial cells, although no staining for PTGFR mRNA was observed in endothelial cells. Later, sustained responses, were only observed in large luteal cells, although PTGFR mRNA was decreasing in large luteal cells over time after PGF2A. The involvement of the immune system was also highlighted by the immediate increases in CCL2 mRNA that became much greater over time as there was an apparent influx of CCL2-positive immune cells. Thus, the temporal and cell-specific localization patterns for the studied mRNA demonstrate the complex pathways that are responsible for initiation of luteolysis in the bovine CL.


Subject(s)
Dinoprost , Genes, Immediate-Early , Animals , Cattle , Chemokine CCL2/genetics , Chemokine CCL2/metabolism , Corpus Luteum/physiology , Dinoprost/metabolism , Dinoprost/pharmacology , Endothelial Cells , Female , Luteolysis/physiology , Mice , RNA, Messenger/metabolism
7.
Prog Mol Biol Transl Sci ; 189(1): 35-65, 2022.
Article in English | MEDLINE | ID: mdl-35595352

ABSTRACT

We utilize animal models in urologic research to improve understanding of urinary physiology, determine the etiology of many urologic diseases, and discover and test novel therapeutic interventions. Dogs have a similar urinary tract anatomy and physiology to human and they develop many urologic diseases spontaneously. This chapter offers detailed comparisons of urinary tract anatomy, physiology, and the most common urologic diseases between humans and dogs. Dogs offer a unique opportunity for urologic research because they can be studied in research colonies and in client owned cohorts. Dogs also are among a limited number of non-human species that require continence and socially appropriate urinary behaviors (ex. going to the bathroom outside, training to not have submissive urination, etc.). These features make dogs unique in the animal kingdom and make them an ideal animal model for urologic research.


Subject(s)
Dog Diseases , Urologic Diseases , Animals , Disease Models, Animal , Dogs , Humans , Urologic Diseases/veterinary
8.
Physiol Rep ; 10(5): e15204, 2022 03.
Article in English | MEDLINE | ID: mdl-35234346

ABSTRACT

Women mobilize up to 10% of their bone mass during lactation to provide milk calcium. About 8%-13% of mothers use selective serotonin reuptake inhibitors (SSRI) to treat peripartum depression, but SSRIs independently decrease bone mass. Previously, peripartal use of the SSRI fluoxetine reduced maternal bone mass sustained post-weaning and reduced offspring bone length. To determine whether these effects were fluoxetine-specific or consistent across SSRI compounds, we examined maternal and offspring bone health using the most prescribed SSRI, sertraline. C57BL/6 mice were given 10 mg/kg/day sertraline, from the beginning of pregnancy through the end of lactation. Simultaneously, we treated nulliparous females on the same days as the primiparous groups, resulting in age-matched nulliparous groups. Dams were euthanized at lactation day 10 (peak lactation, n = 7 vehicle; n = 9 sertraline), lactation day 21 (weaning, n = 9 vehicle; n = 9 sertraline), or 3m post-weaning (n = 10 vehicle; n = 10 sertraline) for analysis. Offspring were euthanized at peak lactation or weaning for analysis. We determined that peripartum sertraline treatment decreased maternal circulating calcium concentrations across the treatment period, which was also seen in nulliparous treated females. Sertraline reduced the bone formation marker, procollagen 1 intact N-terminal propeptide, and tended to reduce maternal BV/TV at 3m post-weaning but did not impact maternal or offspring bone health otherwise. Similarly, sertraline did not reduce nulliparous female bone mass. However, sertraline reduced immunofluorescence staining of the tight junction protein, zona occludens in the mammary gland, and altered alveoli morphology, suggesting sertraline may accelerate mammary gland involution. These findings indicate that peripartum sertraline treatment may be a safer SSRI for maternal and offspring bone rather than fluoxetine.


Subject(s)
Mammary Glands, Human , Sertraline , Animals , Calcium/pharmacology , Female , Fluoxetine/pharmacology , Fluoxetine/therapeutic use , Humans , Lactation , Mice , Mice, Inbred C57BL , Osteogenesis , Pregnancy , Selective Serotonin Reuptake Inhibitors/pharmacology , Sertraline/pharmacology
9.
Front Pharmacol ; 13: 828735, 2022.
Article in English | MEDLINE | ID: mdl-35281892

ABSTRACT

Serotonin is a key regulator of mammary gland homeostasis during lactation. Selective serotonin reuptake inhibitors (SSRIs) are commonly used to treat peripartum depression, but also modulates mammary gland serotonin concentrations and signaling in part through DNA methylation. The objective of this study was to determine mouse mammary transcriptome changes in response to the SSRI fluoxetine and how methyl donor supplementation, achieved by folic acid supplementation, affected the transcriptome. Female C57BL/6J mice were fed either breeder diet (containing 4 mg/kg folic acid) or supplemented diet (containing 24 mg/kg folic acid) beginning 2 weeks prior to mating, then on embryonic day 13 mice were injected daily with either saline or 20 mg/kg fluoxetine. Mammary glands were harvested at peak lactation, lactation day 10, for transcriptomic analysis. Fluoxetine but not folic acid altered circulating serotonin and calcium concentrations, and folic acid reduced mammary serotonin concentrations, however only fluoxetine altered genes in the mammary transcriptome. Fluoxetine treatment altered fifty-six genes. Elovl6 was the most significantly altered gene by fluoxetine treatment along with gene pathways involving fatty acid homeostasis, PPARγ, and adipogenesis, which are critical for milk fat synthesis. Enriched pathways in the mammary gland by fluoxetine revealed pathways including calcium signaling, serotonin receptors, milk proteins, and cellular response to cytokine stimulus which are important for lactation. Although folic acid did not impact specific genes, a less stringent pathway analysis revealed more diffuse effects where folic acid enriched pathways involving negative regulation of gene expression as expected, but additionally enriched pathways involving serotonin, glycolysis, and lactalbumin which are critical for lactation. In conclusion, peripartal SSRI use and folic acid supplementation altered critical genes related to milk synthesis and mammary gland function that are important to a successful lactation. However, folic acid supplementation did not reverse changes in the mammary gland transcriptome altered by peripartal SSRI treatment.

10.
Toxics ; 10(2)2022 Feb 16.
Article in English | MEDLINE | ID: mdl-35202275

ABSTRACT

Lower urinary tract dysfunction (LUTD) is nearly ubiquitous in men of advancing age and exerts substantial physical, mental, social, and financial costs to society. While a large body of research is focused on the molecular, genetic, and epigenetic underpinnings of the disease, little research has been dedicated to the influence of environmental chemicals on disease initiation, progression, or severity. Despite a few recent studies indicating a potential developmental origin of male LUTD linked to chemical exposures in the womb, it remains a grossly understudied endpoint in toxicology research. Therefore, we direct this review to toxicologists who are considering male LUTD as a new aspect of chemical toxicity studies. We focus on the LUTD disease process in men, as well as in the male mouse as a leading research model. To introduce the disease process, we describe the physiology of the male lower urinary tract and the cellular composition of lower urinary tract tissues. We discuss known and suspected mechanisms of male LUTD and examples of environmental chemicals acting through these mechanisms to contribute to LUTD. We also describe mouse models of LUTD and endpoints to diagnose, characterize, and quantify LUTD in men and mice.

11.
Int J Mol Sci ; 22(22)2021 Nov 18.
Article in English | MEDLINE | ID: mdl-34830342

ABSTRACT

Fibrogenic and inflammatory processes in the prostate are linked to the development of lower urinary tract symptoms (LUTS) in men. Our previous studies identified that osteopontin (OPN), a pro-fibrotic cytokine, is abundant in the prostate of men with LUTS, and its secretion is stimulated by inflammatory cytokines potentially to drive fibrosis. This study investigates whether the lack of OPN ameliorates inflammation and fibrosis in the mouse prostate. We instilled uropathogenic E. coli (UTI89) or saline (control) transurethrally to C57BL/6J (WT) or Spp1tm1Blh/J (OPN-KO) mice and collected the prostates one or 8 weeks later. We found that OPN mRNA and protein expression were significantly induced by E. coli-instillation in the dorsal prostate (DP) after one week in WT mice. Deficiency in OPN expression led to decreased inflammation and fibrosis and the prevention of urinary dysfunction after 8 weeks. RNAseq analysis identified that E. coli-instilled WT mice expressed increased levels of inflammatory and fibrotic marker RNAs compared to OPN-KO mice including Col3a1, Dpt, Lum and Mmp3 which were confirmed by RNAscope. Our results indicate that OPN is induced by inflammation and prolongs the inflammatory state; genetic blockade of OPN accelerates recovery after inflammation, including a resolution of prostate fibrosis.


Subject(s)
Escherichia coli Infections/genetics , Osteopontin/genetics , Prostate/metabolism , Urinary Tract Infections/genetics , Uropathogenic Escherichia coli/pathogenicity , Animals , Chondroitin Sulfate Proteoglycans/genetics , Chondroitin Sulfate Proteoglycans/metabolism , Collagen Type III/genetics , Collagen Type III/metabolism , Disease Models, Animal , Escherichia coli Infections/metabolism , Escherichia coli Infections/pathology , Escherichia coli Infections/prevention & control , Extracellular Matrix Proteins/genetics , Extracellular Matrix Proteins/metabolism , Fibrosis , Gene Expression Regulation , Humans , Inflammation , Lumican/genetics , Lumican/metabolism , Male , Matrix Metalloproteinase 3/genetics , Matrix Metalloproteinase 3/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Osteopontin/deficiency , Prostate/pathology , RNA, Messenger/genetics , RNA, Messenger/metabolism , Signal Transduction , Urinary Tract Infections/metabolism , Urinary Tract Infections/pathology , Urinary Tract Infections/prevention & control , Uropathogenic Escherichia coli/growth & development
12.
Physiol Rep ; 9(15): e14964, 2021 08.
Article in English | MEDLINE | ID: mdl-34337899

ABSTRACT

The void spot assay (VSA) is a cost-effective method for evaluating and quantifying mouse urinary voiding phenotypes. The VSA has been used to differentiate voiding behaviors between experimental groups, but not as a diagnostic assay. To build toward this goal, we used the VSA to define voiding patterns of male mice with diabetic diuresis (BTBR.Cg-Lepob /WiscJ mice), irritative urinary dysfunction (E. coli UTI89 urinary tract infection), and obstructive urinary dysfunction (testosterone and estradiol slow-release implants) compared to their respective controls. Many studies compare individual VSA endpoints (urine spot size, quantity, or distribution) between experimental groups. Here, we consider all endpoints collectively to establish VSA phenomes of mice with three different etiologies of voiding dysfunction. We created an approach called normalized endpoint work through (NEW) to normalize VSA outputs to control mice, and then applied principal components analysis and hierarchical clustering to 12 equally weighted, normalized, scaled, and zero-centered VSA outcomes collected from each mouse (the VSA phenome). This approach accurately classifies mice based on voiding dysfunction etiology. We used principal components analysis and hierarchical clustering to show that some aged mice (>24 m old) develop an obstructive or a diabetic diuresis VSA phenotype while others develop a unique phenotype that does not cluster with that of diabetic, infected, or obstructed mice. These findings support use of the VSA to identify specific urinary phenotypes in mice and the continued use of aged mice as they develop urinary dysfunction representative of the various etiologies of LUTS in men.


Subject(s)
Biological Assay/methods , Diuresis , Urinary Bladder/physiopathology , Urinary Incontinence, Stress/physiopathology , Urinary Tract Infections/physiopathology , Urination Disorders/physiopathology , Urodynamics , Animals , Diabetes Mellitus, Experimental/complications , Male , Mice , Mice, Inbred C57BL , Mice, Obese , Testosterone/pharmacology
13.
Dis Model Mech ; 14(7)2021 07 01.
Article in English | MEDLINE | ID: mdl-34318329

ABSTRACT

Benign prostatic hyperplasia/lower urinary tract dysfunction (LUTD) affects nearly all men. Symptoms typically present in the fifth or sixth decade and progressively worsen over the remainder of life. Here, we identify a surprising origin of this disease that traces back to the intrauterine environment of the developing male, challenging paradigms about when this disease process begins. We delivered a single dose of a widespread environmental contaminant present in the serum of most Americans [2,3,7,8 tetrachlorodibenzo-p-dioxin (TCDD), 1 µg/kg], and representative of a broader class of environmental contaminants, to pregnant mice and observed an increase in the abundance of a neurotrophic factor, artemin, in the developing mouse prostate. Artemin is required for noradrenergic axon recruitment across multiple tissues, and TCDD rapidly increases prostatic noradrenergic axon density in the male fetus. The hyperinnervation persists into adulthood, when it is coupled to autonomic hyperactivity of prostatic smooth muscle and abnormal urinary function, including increased urinary frequency. We offer new evidence that prostate neuroanatomical development is malleable and that intrauterine chemical exposures can permanently reprogram prostate neuromuscular function to cause male LUTD in adulthood.


Subject(s)
Polychlorinated Dibenzodioxins , Urinary Tract , Adult , Animals , Female , Humans , Male , Mice , Polychlorinated Dibenzodioxins/toxicity , Pregnancy , Prostate , Rats , Rats, Sprague-Dawley
14.
Am J Physiol Renal Physiol ; 321(1): F82-F92, 2021 07 01.
Article in English | MEDLINE | ID: mdl-34121451

ABSTRACT

We used male BTBR mice carrying the Lepob mutation, which are subject to severe and progressive obesity and diabetes beginning at 6 wk of age, to examine the influence of one specific manifestation of sleep apnea, intermittent hypoxia (IH), on male urinary voiding physiology and genitourinary anatomy. A custom device was used to deliver continuous normoxia (control) or IH to wild-type and Lepob/ob (mutant) mice for 2 wk. IH was delivered during the 12-h inactive (light) period in the form of 90 s of 6% O2 followed by 90 s of room air. Continuous room air was delivered during the 12-h active (dark) period. We then evaluated genitourinary anatomy and physiology. As expected for the type 2 diabetes phenotype, mutant mice consumed more food and water, weighed more, and voided more frequently and in larger urine volumes. They also had larger bladder volumes but smaller prostates, seminal vesicles, and urethras than wild-type mice. IH decreased food consumption and increased bladder relative weight independent of genotype and increased urine glucose concentration in mutant mice. When evaluated based on genotype (normoxia + IH), the incidence of pathogenic bacteriuria was greater in mutant mice than in wild-type mice, and among mice exposed to IH, bacteriuria incidence was greater in mutant mice than in wild-type mice. We conclude that IH exposure and type 2 diabetes can act independently and together to modify male mouse urinary function. NEW & NOTEWORTHY Metabolic syndrome and obstructive sleep apnea are common in aging men, and both have been linked to urinary voiding dysfunction. Here, we show that metabolic syndrome and intermittent hypoxia (a manifestation of sleep apnea) have individual and combined influences on voiding function and urogenital anatomy in male mice.


Subject(s)
Diabetes Mellitus, Type 2/metabolism , Hypoxia/metabolism , Metabolic Syndrome/metabolism , Obesity/metabolism , Animals , Diabetes Mellitus, Type 2/genetics , Disease Models, Animal , Hypoxia/genetics , Insulin Resistance/physiology , Liver/metabolism , Male , Metabolic Syndrome/genetics , Mice , Obesity/genetics
15.
J Pathol ; 255(2): 141-154, 2021 10.
Article in English | MEDLINE | ID: mdl-34173975

ABSTRACT

Stromal-epithelial interactions are critical to the morphogenesis, differentiation, and homeostasis of the prostate, but the molecular identity and anatomy of discrete stromal cell types is poorly understood. Using single-cell RNA sequencing, we identified and validated the in situ localization of three smooth muscle subtypes (prostate smooth muscle, pericytes, and vascular smooth muscle) and two novel fibroblast subtypes in human prostate. Peri-epithelial fibroblasts (APOD+) wrap around epithelial structures, whereas interstitial fibroblasts (C7+) are interspersed in extracellular matrix. In contrast, the mouse displayed three fibroblast subtypes with distinct proximal-distal and lobe-specific distribution patterns. Statistical analysis of mouse and human fibroblasts showed transcriptional correlation between mouse prostate (C3+) and urethral (Lgr5+) fibroblasts and the human interstitial fibroblast subtype. Both urethral fibroblasts (Lgr5+) and ductal fibroblasts (Wnt2+) in the mouse contribute to a proximal Wnt/Tgfb signaling niche that is absent in human prostate. Instead, human peri-epithelial fibroblasts express secreted WNT inhibitors SFRPs and DKK1, which could serve as a buffer against stromal WNT ligands by creating a localized signaling niche around individual prostate glands. We also identified proximal-distal fibroblast density differences in human prostate that could amplify stromal signaling around proximal prostate ducts. In human benign prostatic hyperplasia, fibroblast subtypes upregulate critical immunoregulatory pathways and show distinct distributions in stromal and glandular phenotypes. A detailed taxonomy of leukocytes in benign prostatic hyperplasia reveals an influx of myeloid dendritic cells, T cells and B cells, resembling a mucosal inflammatory disorder. A receptor-ligand interaction analysis of all cell types revealed a central role for fibroblasts in growth factor, morphogen, and chemokine signaling to endothelia, epithelia, and leukocytes. These data are foundational to the development of new therapeutic targets in benign prostatic hyperplasia. © 2021 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Subject(s)
Cellular Microenvironment/physiology , Fibroblasts/cytology , Prostate/cytology , Animals , Extracellular Matrix , Humans , Male , Mice , Prostatic Hyperplasia/pathology , Single-Cell Analysis
16.
Am J Clin Exp Urol ; 9(1): 121-131, 2021.
Article in English | MEDLINE | ID: mdl-33816700

ABSTRACT

Urinary voiding dysfunction in aging men can cause bothersome symptoms and irreparable tissue damage. Underlying mechanisms are not fully known. We previously demonstrated that subcutaneous, slow-release testosterone and estradiol implants (T+E2) drive a pattern of urinary voiding dysfunction in male mice that resembles that of aging men. The initial goal of this study was to test the hypothesis that prostatic epithelial beta-catenin (Ctnnb1) is required for T+E2-mediated voiding dysfunction. Targeted Ctnnb1 deletion did not significantly change voiding function in control or T+E2 treated mice but led to the surprising discovery that the C57BL/6J × FVB/NJ × 129S1 mixed genetic background onto which Ctnnb1 loss of function alleles were maintained is profoundly susceptible to voiding dysfunction. The mixed background mice develop a more rapid T+E2-mediated increase in spontaneous urine spotting, are more impaired in ability to initiate bladder contraction, and develop larger and heavier bladders than T+E2 treated C57BL/6J pure bred mice. To better understand mechanisms, we separately evaluated contributions of T and E2 and found that E2 mediates voiding dysfunction. Our findings that genetic factors serve as modifiers of responsiveness to T and E2 demonstrate the need to control for genetic background in studies of male voiding dysfunction. We also show that genetic factors could control severity of voiding dysfunction. We demonstrate the importance of E2 as a key mediator of voiding impairment, and show that the concentration of E2 in subcutaneous implants determines the severity of voiding dysfunction in mice, demonstrating that the mouse model is tunable, a factor which is important for future pharmacological intervention studies.

17.
Dev Biol ; 473: 50-58, 2021 05.
Article in English | MEDLINE | ID: mdl-33529704

ABSTRACT

The prostate develops by epithelial budding and branching processes that occur during fetal and postnatal stages. The adult prostate demonstrates remarkable regenerative capacity, with the ability to regrow to its original size over multiple cycles of castration and androgen administration. This capacity for controlled regeneration prompted the search for an androgen-independent epithelial progenitor in benign prostatic hyperplasia (BPH) and prostate cancer (PCa). BPH is hypothesized to be a reawakening of ductal branching, resulting in the formation of new proximal glands, all while androgen levels are decreasing in the aging male. Advanced prostate cancer can be slowed with androgen deprivation, but resistance eventually occurs, suggesting the existence of an androgen-independent progenitor. Recent studies indicate that there are multiple castration-insensitive epithelial cell types in the proximal area of the prostate, but not all act as progenitors during prostate development or regeneration. This review highlights how recent cellular and anatomical studies are changing our perspective on the identity of the prostate progenitor.


Subject(s)
Prostate/metabolism , Prostate/pathology , Stem Cells/metabolism , Androgen Antagonists/metabolism , Androgens/metabolism , Animals , Cell Differentiation , Epithelial Cells/metabolism , Humans , Male , Organogenesis , Prostate/embryology , Prostatic Hyperplasia/metabolism , Prostatic Neoplasms/metabolism
18.
PLoS One ; 16(2): e0246266, 2021.
Article in English | MEDLINE | ID: mdl-33630889

ABSTRACT

Male lower urinary tract symptoms (LUTS) comprise a common syndrome of aging that negatively impacts quality of life. The etiology of LUTS is multifactorial, involving benign prostatic hyperplasia, smooth muscle and neurologic dysfunction, inflammation, sexually transmitted infections, fibrosis, and potentially dysbiosis, but this aspect remains poorly explored. We investigated whether the presence of infectious agents in urine might be associated with LUTS by combining next-generation DNA sequencing for virus discovery, microbiome analysis for characterization of bacterial communities, and mass spectrometry-based metabolomics. In urine from 29 LUTS cases and 9 controls from Wisconsin, we found a statistically significant association between a diagnosis of LUTS and the presence of JC virus (JCV), a common neurotropic human polyomavirus (Polyomaviridae, Betapolyomavirus) linked to severe neurologic disease in rare cases. This association (based on metagenomics) was not borne out when specific polymerase chain reaction (PCR) testing was applied to this set of samples, likely due to the greater sensitivity of PCR. Interestingly, urine metabolomics analysis identified dysregulation of metabolites associated with key LUTS processes. Microbiome analysis found no evidence of microbial community dysbiosis in LUTS cases, but JCV-positive samples contained more Anaerococcus species, which are involved in polymicrobial infections of the urinary tract. Neither age nor body mass index were significantly associated with the presence of urinary JCV-in the initial group or in an additional, regionally distinct group. These data provide preliminary support the hypothesis that viruses such as JCV may play a role in the development or progression of LUTS, together with other infectious agents and host metabolic responses.


Subject(s)
JC Virus , Lower Urinary Tract Symptoms/virology , Polyomavirus Infections/complications , Aged , Case-Control Studies , High-Throughput Nucleotide Sequencing , Humans , JC Virus/genetics , JC Virus/metabolism , JC Virus/pathogenicity , Lower Urinary Tract Symptoms/etiology , Lower Urinary Tract Symptoms/metabolism , Lower Urinary Tract Symptoms/microbiology , Male , Metabolomics , Middle Aged , Polymerase Chain Reaction , Polyomavirus Infections/virology , Tandem Mass Spectrometry
19.
Am J Physiol Renal Physiol ; 320(1): F31-F46, 2021 01 01.
Article in English | MEDLINE | ID: mdl-33135480

ABSTRACT

Bacterial infection is one known etiology of prostatic inflammation. Prostatic inflammation is associated with prostatic collagen accumulation and both are linked to progressive lower urinary tract symptoms in men. We characterized a model of prostatic inflammation using transurethral instillations of Escherichia coli UTI89 in C57BL/6J male mice with the goal of determining the optimal instillation conditions, understanding the impact of instillation conditions on urinary physiology, and identifying ideal prostatic lobes and collagen 1a1 prostatic cell types for further analysis. The smallest instillation volume tested (50 µL) distributed exclusively to the bladder, 100- and 200-µL volumes distributed to the bladder and prostate, and a 500-µL volume distributed to the bladder, prostate, and ureter. A threshold optical density of 0.4 E. coli UTI89 in the instillation fluid was necessary for significant (P < 0.05) prostate colonization. E. coli UTI89 infection resulted in a low frequency, high volume spontaneous voiding pattern. This phenotype was due to exposure to E. coli UTI89, not catheterization alone, and was minimally altered by a 50-µL increase in instillation volume and doubling of E. coli concentration. Prostate inflammation was isolated to the dorsal prostate and was accompanied by increased collagen density. This was partnered with increased density of protein tyrosine phosphatase receptor type C+, procollagen type I-α1+ copositive cells and decreased density of α2-smooth muscle actin+, procollagen type I-α1+ copositive cells. Overall, we determined that this model is effective in altering urinary phenotype and producing prostatic inflammation and collagen accumulation in mice.


Subject(s)
Collagen Type I/metabolism , Escherichia coli Infections/microbiology , Procollagen/metabolism , Prostate/microbiology , Prostatitis/microbiology , Uropathogenic Escherichia coli/pathogenicity , Actins/metabolism , Animals , Collagen Type I, alpha 1 Chain , Disease Models, Animal , Escherichia coli Infections/complications , Leukocyte Common Antigens/metabolism , Male , Mice, Inbred C57BL , Prostate/metabolism , Prostate/pathology , Prostatitis/metabolism , Prostatitis/pathology , Tissue Culture Techniques
20.
PLoS One ; 15(7): e0232564, 2020.
Article in English | MEDLINE | ID: mdl-32726309

ABSTRACT

BACKGROUND: The identity and spatial distribution of prostatic cell types has been determined in humans but not in dogs, even though aging- and prostate-related voiding disorders are common in both species and mechanistic factors, such as prostatic collagen accumulation, appear to be shared between species. In this publication we characterize the regional distribution of prostatic cell types in the young intact dog to enable comparisons with human and mice and we examine how the cellular source of procollagen 1A1 changes with age in intact male dogs. METHODS: A multichotomous decision tree involving sequential immunohistochemical stains was validated for use in dog and used to identify specific prostatic cell types and determine their distribution in the capsule, peripheral, periurethral and urethral regions of the young intact canine prostate. Prostatic cells identified using this technique include perivascular smooth muscle cells, pericytes, endothelial cells, luminal, intermediate, and basal epithelial cells, neuroendocrine cells, myofibroblasts, fibroblasts, fibrocytes, and other hematolymphoid cells. To enhance rigor and transparency, all high resolution images (representative images shown in the figures and biological replicates) are available through the GUDMAP database at https://doi.org/10.25548/16-WMM4. RESULTS: The prostatic peripheral region harbors the largest proportion of epithelial cells. Aging does not change the density of hematolymphoid cells, fibroblasts, and myofibroblasts in the peripheral region or in the fibromuscular capsule, regions where we previously observed aging- and androgen-mediated increases in prostatic collagen abundance Instead, we observed aging-related changes the procollagen 1A1 positive prostatic cell identity from a myofibroblast to a fibroblast. CONCLUSIONS: Hematolymphoid cells and myofibroblasts are often identified as sources of collagen in tissues prone to aging-related fibrosis. We show that these are not the likely sources of pathological collagen synthesis in older intact male dogs. Instead, we identify an aging-related shift in the prostatic cell type producing procollagen 1A1 that will help direct development of cell type and prostate appropriate therapeutics for collagen accumulation.


Subject(s)
Aging/physiology , Fibroblasts/metabolism , Myofibroblasts/metabolism , Procollagen/biosynthesis , Prostate/cytology , Urinary Bladder/physiopathology , Aging/metabolism , Aging/pathology , Animals , Disease Susceptibility , Dogs , Immunohistochemistry , Male , Prostate/metabolism , Prostate/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...