Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 8(14): 13285-13299, 2023 Apr 11.
Article in English | MEDLINE | ID: mdl-37065033

ABSTRACT

The adsorption isotherms of azo dyes on a newly synthesized titania-doped silica (TdS) aerogel compared to silica aerogels and activated charcoal (AC) are systematically investigated. Monolithic TdS aerogels were synthesized by the cogelation process followed by supercritical drying of tetraethyl orthosilicate (TEOS) as a gel precursor and titanium(IV) isopropoxide (TTIP) as a metal complex precursor for co-polymerization in ethanol solvent. An acid-base catalyst was used for the hydrolysis and condensation of TEOS and TTIP. The effect of Ti4+ doping in a silica aerogel on the mesoporous structure and the adsorption capacity of methylene blue (MB) and crystal violet (CV) dyes were evaluated from the UV-vis absorption spectra. In order to compare the adsorption isotherms, the surface areas of silica and TdS aerogels were first normalized with respect to AC, as adsorption is a surface phenomenon. The azo dye equilibrium adsorption data were analyzed using different isotherm equations and found to follow the Langmuir adsorption isotherm. The maximum monolayer adsorption capacities for the adsorbent TdS aerogel normalized with the AC of the Langmuir isotherm are 131.58 and 159.89 mg/g for MB and CV dyes, respectively. From the Langmuir curve fitting, the Q max value of the TdS aerogel was found to increase by 1.22-fold compared to AC, while it increased 1.25-1.53-fold compared to the silica aerogel. After four cycles, regeneration efficiency values for MB and CV dyes are about 84 and 80%, respectively. The study demonstrates the excellent potential and recovery rate of silica and TdS aerogel adsorbents in removing dyes from wastewater. The pore volume and average pore size of the new aerogel, TdS, were found to be lower than those of the silica aerogel. Thus, a new TdS aerogel with a high capacity of adsorption of azo dyes is successfully achieved.

2.
J Colloid Interface Sci ; 352(1): 30-5, 2010 Dec 01.
Article in English | MEDLINE | ID: mdl-20822773

ABSTRACT

The wetting of solid surfaces by water droplets is ubiquitous in our daily lives as well as in industrial processes. In the present research work, water repellent porous silica films are prepared on glass substrate at room temperature by sol-gel process. The coating sol was prepared by keeping the molar ratio of methyltriethoxysilane (MTES), methanol (MeOH), water (H(2)O) constant at 1:12.90:4.74, respectively, with 2M NH(4)OH throughout the experiments and the molar ratio (M) of MTES/Ph-TMS was varied from 0 to 0.22. A simple dip coating technique is adopted to coat silica films on the glass substrates. The static water contact angle as high as 164° and water sliding angle as low as 4° was obtained for silica film prepared from M=0.22. The surface morphological studies of the prepared silica film showed the porous structure with pore sizes typically ranging from 200nm to 1.3µm. The superhydrophobic silica films prepared from M=0.22 retained their superhydrophobicity up to a temperature of 285°C and above this temperature the films became superhydrophilic. The porous and water repellent silica films are prepared by proper alteration of the Ph-TMS in the coating solution. The prepared silica films were characterized by surface profilometer, scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier Transform Infrared (FT-IR) spectroscopy, humidity tests, chemical aging tests, static and dynamic water contact angle measurements.


Subject(s)
Coated Materials, Biocompatible/chemistry , Silicon Dioxide/chemistry , Water/chemistry , Coated Materials, Biocompatible/chemical synthesis , Gels/chemistry , Methanol/chemistry , Particle Size , Porosity , Silanes/chemistry , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...