Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
J Imaging ; 9(12)2023 Nov 23.
Article in English | MEDLINE | ID: mdl-38132674

ABSTRACT

Ultrafast ultrasound imaging, characterized by high frame rates, generates low-quality images. Convolutional neural networks (CNNs) have demonstrated great potential to enhance image quality without compromising the frame rate. However, CNNs have been mostly trained on simulated or phantom images, leading to suboptimal performance on in vivo images. In this study, we present a method to enhance the quality of single plane wave (PW) acquisitions using a CNN trained on in vivo images. Our contribution is twofold. Firstly, we introduce a training loss function that accounts for the high dynamic range of the radio frequency data and uses the Kullback-Leibler divergence to preserve the probability distributions of the echogenicity values. Secondly, we conduct an extensive performance analysis on a large new in vivo dataset of 20,000 images, comparing the predicted images to the target images resulting from the coherent compounding of 87 PWs. Applying a volunteer-based dataset split, the peak signal-to-noise ratio and structural similarity index measure increase, respectively, from 16.466 ± 0.801 dB and 0.105 ± 0.060, calculated between the single PW and target images, to 20.292 ± 0.307 dB and 0.272 ± 0.040, between predicted and target images. Our results demonstrate significant improvements in image quality, effectively reducing artifacts.

2.
Clin Neurophysiol ; 153: 57-67, 2023 09.
Article in English | MEDLINE | ID: mdl-37454564

ABSTRACT

OBJECTIVE: Home-based non-invasive brain stimulation (NIBS) has been suggested as an adjunct treatment strategy for neuro-psychiatric disorders. There are currently no available solutions to direct and monitor correct placement of the stimulation electrodes. To address this issue, we propose an easy-to-use digital tool to support patients for self-application. METHODS: We recruited 36 healthy participants and compared their cap placement performance with the one of a NIBS-expert investigator. We tested participants' placement accuracy with instructions before (Pre) and after the investigator's placement (Post), as well as participants using the support tool (CURRENT). User experience (UX) and confidence were further evaluated. RESULTS: Permutation tests demonstrated a smaller deviation within the CURRENT compared with Pre cap placement (p = 0.02). Subjective evaluation of ease of use and usefulness of the tool were vastly positive (8.04 out of 10). CURRENT decreased the variability of performance, ensured placement within the suggested maximum of deviation (10 mm) and supported confidence of correct placement. CONCLUSIONS: This study supports the usability of this novel technology for correct electrode placement during self-application in home-based settings. SIGNIFICANCE: CURRENT provides an exciting opportunity to promote home-based, self-applied NIBS as a safe, high-frequency treatment strategy that can be well integrated in patients' daily lives.


Subject(s)
Transcranial Direct Current Stimulation , Humans , Brain/physiology , Electrodes , Electric Stimulation , Computers
3.
Diagnostics (Basel) ; 13(5)2023 Feb 22.
Article in English | MEDLINE | ID: mdl-36899979

ABSTRACT

Visual inspection with acetic acid (VIA) is one of the methods recommended by the World Health Organization for cervical cancer screening. VIA is simple and low-cost; it, however, presents high subjectivity. We conducted a systematic literature search in PubMed, Google Scholar and Scopus to identify automated algorithms for classifying images taken during VIA as negative (healthy/benign) or precancerous/cancerous. Of the 2608 studies identified, 11 met the inclusion criteria. The algorithm with the highest accuracy in each study was selected, and some of its key features were analyzed. Data analysis and comparison between the algorithms were conducted, in terms of sensitivity and specificity, ranging from 0.22 to 0.93 and 0.67 to 0.95, respectively. The quality and risk of each study were assessed following the QUADAS-2 guidelines. Artificial intelligence-based cervical cancer screening algorithms have the potential to become a key tool for supporting cervical cancer screening, especially in settings where there is a lack of healthcare infrastructure and trained personnel. The presented studies, however, assess their algorithms using small datasets of highly selected images, not reflecting whole screened populations. Large-scale testing in real conditions is required to assess the feasibility of integrating those algorithms in clinical settings.

4.
Eur Arch Psychiatry Clin Neurosci ; 273(1): 85-98, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36271928

ABSTRACT

Enhanced behavioral interventions are gaining increasing interest as innovative treatment strategies for major depressive disorder (MDD). In this study protocol, we propose to examine the synergistic effects of a self-administered home-treatment, encompassing transcranial direct current stimulation (tDCS) along with a video game based training of attentional control. The study is designed as a two-arm, double-blind, randomized and placebo-controlled multi-center trial (ClinicalTrials.gov: NCT04953208). At three study sites (Israel, Latvia, and Germany), 114 patients with a primary diagnosis of MDD undergo 6 weeks of intervention (30 × 30 min sessions). Patients assigned to the intervention group receive active tDCS (anode F3 and cathode F4; 2 mA intensity) and an action-like video game, while those assigned to the control group receive sham tDCS along with a control video game. An electrode-positioning algorithm is used to standardize tDCS electrode positioning. Participants perform their designated treatment at the clinical center (sessions 1-5) and continue treatment at home under remote supervision (sessions 6-30). The endpoints are feasibility (primary) and safety, treatment efficacy (secondary, i.e., change of Montgomery-Åsberg Depression Rating Scale (MADRS) scores at week six from baseline, clinical response and remission, measures of social, occupational, and psychological functioning, quality of life, and cognitive control (tertiary). Demonstrating the feasibility, safety, and efficacy of this novel combined intervention could expand the range of available treatments for MDD to neuromodulation enhanced interventions providing cost-effective, easily accessible, and low-risk treatment options.ClinicalTrials.gov: NCT04953208.


Subject(s)
Depressive Disorder, Major , Transcranial Direct Current Stimulation , Humans , Depressive Disorder, Major/therapy , Transcranial Direct Current Stimulation/methods , Depression/therapy , Quality of Life , Treatment Outcome , Double-Blind Method , Cognition , Brain , Randomized Controlled Trials as Topic , Multicenter Studies as Topic
5.
Healthcare (Basel) ; 10(2)2022 Feb 18.
Article in English | MEDLINE | ID: mdl-35207002

ABSTRACT

Visual inspection with acetic acid (VIA) is recommended by the World Health Organization for primary cervical cancer screening or triage of human papillomavirus-positive women living in low-resource settings. Nonetheless, traditional VIA with the naked-eye is associated with large variabilities in the detection of pre-cancer and with a lack of quality control. Digital-VIA (D-VIA), using high definition cameras, allows magnification and zooming on transformation zones and suspicious cervical regions, as well as simultaneously compare native and post-VIA images in real-time. We searched MEDLINE and LILACS between January 2015 and November 2021 for relevant studies conducted in low-resource settings using a smartphone device for D-VIA. The aim of this review was to provide an evaluation on available data for smartphone use in low-resource settings in the context of D-VIA-based cervical cancer screenings. The available results to date show that the quality of D-VIA images is satisfactory and enables CIN1/CIN2+ diagnosis, and that a smartphone is a promising tool for cervical cancer screening monitoring and for on- and off-site supervision, and training. The use of artificial intelligence algorithms could soon allow automated and accurate cervical lesion detection.

6.
PLoS One ; 16(12): e0260776, 2021.
Article in English | MEDLINE | ID: mdl-34914727

ABSTRACT

INTRODUCTION: Cervical cancer remains a major public health challenge in low- and middle-income countries (LMICs) due to financial and logistical issues. WHO recommendation for cervical cancer screening in LMICs includes HPV testing as primary screening followed by visual inspection with acetic acid (VIA) and treatment. However, VIA is a subjective procedure dependent on the healthcare provider's experience. Its accuracy can be improved by computer-aided detection techniques. Our aim is to assess the performance of a smartphone-based Automated VIA Classifier (AVC) relying on Artificial Intelligence to discriminate precancerous and cancerous lesions from normal cervical tissue. METHODS: The AVC study will be nested in an ongoing cervical cancer screening program called "3T-study" (for Test, Triage and Treat), including HPV self-sampling followed by VIA triage and treatment if needed. After application of acetic acid on the cervix, precancerous and cancerous cells whiten more rapidly than non-cancerous ones and their whiteness persists stronger overtime. The AVC relies on this key feature to determine whether the cervix is suspect for precancer or cancer. In order to train and validate the AVC, 6000 women aged 30 to 49 years meeting the inclusion criteria will be recruited on a voluntary basis, with an estimated 100 CIN2+, calculated using a confidence level of 95% and an estimated sensitivity of 90% +/-7% precision on either side. Diagnostic test performance of AVC test and two current standard tests (VIA and cytology) used routinely for triage will be evaluated and compared. Histopathological examination will serve as reference standard. Participants' and providers' acceptability of the technology will also be assessed. The study protocol was registered under ClinicalTrials.gov (number NCT04859530). EXPECTED RESULTS: The study will determine whether AVC test can be an effective method for cervical cancer screening in LMICs.


Subject(s)
Artificial Intelligence , Early Detection of Cancer/methods , Papillomaviridae/isolation & purification , Papillomavirus Infections/complications , Smartphone/statistics & numerical data , Uterine Cervical Dysplasia/diagnosis , Uterine Cervical Neoplasms/diagnosis , Acetic Acid/chemistry , Adult , Cameroon/epidemiology , Clinical Trials as Topic , Female , Humans , Middle Aged , Papillomaviridae/genetics , Papillomavirus Infections/virology , Prognosis , Prospective Studies , Uterine Cervical Neoplasms/epidemiology , Uterine Cervical Neoplasms/virology , Uterine Cervical Dysplasia/epidemiology , Uterine Cervical Dysplasia/virology
7.
Diagnostics (Basel) ; 11(4)2021 Apr 17.
Article in English | MEDLINE | ID: mdl-33920732

ABSTRACT

Cervical cancer remains a major public health concern in developing countries due to financial and human resource constraints. Visual inspection with acetic acid (VIA) of the cervix was widely promoted and routinely used as a low-cost primary screening test in low- and middle-income countries. It can be performed by a variety of health workers and the result is immediate. VIA provides a transient whitening effect which appears and disappears differently in precancerous and cancerous lesions, as compared to benign conditions. Colposcopes are often used during VIA to magnify the view of the cervix and allow clinicians to visually assess it. However, this assessment is generally subjective and unreliable even for experienced clinicians. Computer-aided techniques may improve the accuracy of VIA diagnosis and be an important determinant in the promotion of cervical cancer screening. This work proposes a smartphone-based solution that automatically detects cervical precancer from the dynamic features extracted from videos taken during VIA. The proposed solution achieves a sensitivity and specificity of 0.9 and 0.87 respectively, and could be a solution for screening in countries that suffer from the lack of expensive tools such as colposcopes and well-trained clinicians.

8.
Sensors (Basel) ; 20(23)2020 Nov 29.
Article in English | MEDLINE | ID: mdl-33260467

ABSTRACT

In this paper, we design linear precoders for the downlink of a visible light communication (VLC) system that simultaneously serves multiple users. Instead of using phosphor-coated white light-emitting diodes (PWLEDs), we focus on Red-Green-Blue light-emitting diodes (RGB-LEDs) that allow modulating three separate data streams on the three primary colors of the RGB-LEDs. For this system, we design a zero-forcing (ZF) precoder that maximizes the weighted sum rate for a multilevel pulse amplitude modulation (M-PAM). The precoding design in RGB-based systems presents some challenges due to the system constraints, such as the limited power, the non-negative amplitude constraints per light-emitting diode (LED), and the need to guarantee white light emission while transmitting with RGB-LEDs. For comparison purposes, we also consider the ZF design for a PWLED-based system and evaluate the performance of both a PWLED- and an RGB-based system.

SELECTION OF CITATIONS
SEARCH DETAIL
...