Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
Add more filters










Publication year range
1.
Int J Food Microbiol ; 396: 110197, 2023 Jul 02.
Article in English | MEDLINE | ID: mdl-37084662

ABSTRACT

In recent years, acidophilic, heat-resistant, and spore-forming spoilage bacteria have been identified in pasteurized or treated by high hydrostatic pressure (HPP) fruit juices. Alicyclobacillus acidoterrestris is the bacteria more frequently linked to the spoilage of this type of product because its spores can survive conventional pasteurization and HPP treatments. Under favourable conditions, such as an acidic pH, its spores can germinate and multiply, with the consequent production of guaiacol. Guaiacol is a compound with an undesirable odour ("medicinal", "smoked" or "antiseptic"). In this context, our objective was to determine the prevalence of A. acidoterrestris in 150 Spanish pasteurized and HPP-treated fruit juices purchased from supermarkets or received from manufacturers. Then, the isolates and the reference strain (CECT 7094 T) were characterized to establish differences in terms of (i) growth capacity at different pH and temperatures, and in (ii) guaiacol production capacity. The results showed a high incidence of A. acidoterrestris (18.0 %) in the analysed juices. The 44.4 % of the isolates came from blends of fruit juices. Within juice blends, 9 juices contained apple juice among their ingredients. This represents a 18.8 % of incidence with respect to the total of blended juices with apple. A high incidence in monovarietal apple juices was also observed (3 out of 14 samples). Regarding the characterization of the isolates, EC1 (isolated from an apple concentrate) showed the highest growth capacity at pH 4.0 at temperatures from 20 to 55 °C. Besides, three strains (R42, EC10, and EZ13, isolated from clementine, plum and white grape juice, respectively) could grow at room temperatures (20 and 25 °C). For pH, only EZ13, isolated from white grape juice, was able to grow significantly at pH 2.5. Finally, the production of guaiacol ranged from 74.1 to 145.6 ppm, being the isolate EC1 the one that produced more guaiacol after 24 h of incubation at 45 °C (145.6 ppm). As we have observed, there is a high incidence of A. acidoterrestris in marketed juices and intermediate products despite the treatments received (pasteurization or HPP). Under favourable conditions for the development of this microorganism, it could produce enough guaiacol to spoil the juices before their consumption. Therefore, in order to improve the quality of fruit juices it is necessary to investigate in more detail the origin of this microorganism and to find strategies to reduce its presence in final products.


Subject(s)
Alicyclobacillus , Malus , Fruit and Vegetable Juices/analysis , Hydrostatic Pressure , Fruit/microbiology , Malus/microbiology , Guaiacol/analysis , Spores, Bacterial , Beverages/microbiology
2.
Antibiotics (Basel) ; 12(2)2023 Feb 20.
Article in English | MEDLINE | ID: mdl-36830324

ABSTRACT

In ready-to-eat products, such as cooked ham, fresh cheese, and fuet in which Listeria monocytogenes is a concern, the use of biopreservation techniques represents an additional hurdle to inhibit pathogen growth during storage. The objective of this study was to apply several biopreservation techniques in three different food matrices to reduce the growth of Listeria innocua, used as a surrogate of L. monocytogenes. Several lactic acid bacteria, the bacteriocin nisin, the bacteriophage PhageGuard ListexTM P100, and the enzyme lysozyme were evaluated. Cooked ham treated with the bacteriophage PhageGuard ListexTM at 0.5% or with the lactic acid bacteria SafePro® B-SF-43 (25 g/100 kg) reduced L. innocua population to below the detection limit after 7 days of storage (4 °C plus modified atmosphere packaging). In fresh cheese, the application of PhageGuard ListexTM at 0.2 and 0.5% reduced L. innocua counts by more than 3.4 logarithmic units after 6 days at 4 °C. In fuet, the 1.0% of PhageGuard ListexTM reduced L. innocua population by 0.7 ± 0.2 logarithmic units in front of control with no significant differences to other evaluated biopreservative agents. The present results confirm that the application of biopreservation techniques was able to inhibit L. innocua in fuet, cooked ham, and fresh cheese, and suggest that the type of food matrix and its physicochemical characteristics influence the biopreservative efficacy.

3.
J Sci Food Agric ; 102(13): 5660-5669, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35373358

ABSTRACT

BACKGROUND: The purpose of the present study was to examine the inactivation of Salmonella enterica (50 µL; 109 CFU g-1 ), Listeria monocytogenes (50 µL; 109 CFU g-1 ), and murine norovirus (MNV-1; 50 µL; 107 50% tissue culture infectious dose (TCID50 ) mL-1 ) on whole and fresh-cut strawberries after 2 min disinfection treatments (water (H2 O), chlorine 200 mg L-1 (NaClO), water-assisted ultraviolet-C (UV-C) (WUV), and the combination WUV and 40 mg L-1 of PA (WUV + PA)) in a water tank (15 L) equipped with 4 UV-C lamps (17.2 W each), and after 7 days of cold storage (4 and 10 °C). For MNV-1, dry UV-C treatment (DUV) was also tested. For all UV-C treatments, an irradiation dose of 1.3 kJ m-2 was used. RESULTS: When strawberries were washed with WUV, L. monocytogenes and S. enterica were reduced by 2.8 and 2.2 log CFU g-1 , respectively. The addition of 40 mg L-1 of PA to WUV (WUV + PA) increased the reduction range of L. monocytogenes and S. enterica by 1.9 and 0.8 log, respectively. Regarding the wash water, no pathogens were recovered after the WUV + PA treatment (detection limit 50 CFU mL-1 ). Depending on storage conditions (7 days at 4 or 10 °C), reductions observed were 0.5 to 2.0 log for S. enterica and 0.5 to 3.0 log for L. monocytogenes. The reductions in MNV-1 titer after disinfection treatments ranged from 1.3 to 1.7 log. No significant differences between storage conditions were observed for MNV-1: titers did not decline or were reduced up to 0.3 log after 7 days of cold storage. CONCLUSION: The three-way action for disinfecting strawberries by UV-C irradiation and PA, plus the physical removal of the microorganisms by agitated water, are effective against foodborne pathogens on strawberries and water wash. During storage, WUV had a larger impact on the inactivation kinetics of S. enterica. Storage had little impact on MNV-1 inactivation. © 2022 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Subject(s)
Fragaria , Listeria monocytogenes , Norovirus , Salmonella enterica , Animals , Colony Count, Microbial , Food Microbiology , Fruit , Mice , Peracetic Acid/pharmacology , Water/pharmacology
4.
Int J Food Microbiol ; 364: 109535, 2022 Mar 02.
Article in English | MEDLINE | ID: mdl-35033977

ABSTRACT

Following the market trends, the consumption of fresh and cold-pressed juice in Europe is increasing. However, a primary concern - particularly in apple juice - is the related outbreaks caused by food-borne pathogens. One of the challenges is to find methods able to reduce pathogenic loads while avoiding deterioration of nutritional properties and bioactive compounds that occur in thermal pasteurization processes. In this study, the inactivation of Escherichia coli, Salmonella enterica and Listeria monocytogenes was evaluated under different ultraviolet C (UVC254nm) light treatments (up to 10,665.9 ± 28.1 mJ/cm2), in two different steps of the production chain (before and after juice processing): on apple peel discs and in apple juice. The systems proposed were a horizontal chamber with UVC254nm emitting lamps treating the product disposed at a distance of 12 cm, and a tank containing UVC254nm lamps and in which the product is immersed and agitated. Final reductions ranged from 3.3 ± 0.5 to 5.3 ± 0.4 logarithmic units, depending on the microorganism, matrix and used device. The survival curves were adjusted to Weibull and biphasic models (R2-adj ≥ 0.852), and UVC doses needed for the first decimal reduction were calculated, being lower for the apple peel discs (0.20 to 83.83 mJ/cm2) than they were for apple juice (174.60 to 1273.31 mJ/cm2), probably for the low transmittance of the apple juice compared to the surface treatment occurring on the peels. Within the treatments evaluated, the UVC254nm irradiation of apple peels immersed in water was the best option as it resulted in a reduction of the tested microorganisms of ca. 2-3 log units at lower UVC254nm doses (< 500 mJ/cm2) when compared to those occurring in apple peel treated with the UVC chamber and in juice. As contamination can proceed from apples, the sanitization of these fruit prior to juice production may be helpful in reducing the safety risks of the final product, reducing the drawbacks related to the poor transmittance of the fruit juices.


Subject(s)
Escherichia coli O157 , Listeria monocytogenes , Malus , Salmonella enterica , Beverages , Food Microbiology , Fruit and Vegetable Juices , Salmonella typhimurium , Ultraviolet Rays
5.
Foods ; 10(4)2021 Apr 15.
Article in English | MEDLINE | ID: mdl-33920777

ABSTRACT

Spore-forming bacteria are a great concern for fruit juice processors as they can resist the thermal pasteurization and the high hydrostatic pressure treatments that fruit juices receive during their processing, thus reducing their microbiological quality and safety. In this context, our objective was to evaluate the efficacy of Ultraviolet-C (UV-C) light at 254 nm on reducing bacterial spores of Alicyclobacillus acidoterrestris, Bacillus coagulans and Bacillus cereus at two stages of orange juice production. To simulate fruit disinfection before processing, the orange peel was artificially inoculated with each of the bacterial spores and submitted to UV-C light (97.8-100.1 W/m2) with treatment times between 3 s and 10 min. The obtained product, the orange juice, was also tested by exposing the artificially inoculated juice to UV-C light (100.9-107.9 W/m2) between 5 and 60 min. A three-minute treatment (18.0 kJ/m2) reduced spore numbers on orange peel around 2 log units, while more than 45 min (278.8 kJ/m2) were needed to achieve the same reduction in orange juice for all evaluated bacterial spores. As raw fruits are the main source of bacterial spores in fruit juices, reducing bacterial spores on fruit peels could help fruit juice processors to enhance the microbiological quality and safety of fruit juices.

6.
Int J Food Microbiol ; 335: 108887, 2020 Dec 16.
Article in English | MEDLINE | ID: mdl-33002710

ABSTRACT

Disinfection of fruits is one of the most important steps since they are going to be eaten fresh-or minimally-processed. This step affects quality, safety, and shelf-life of the product. Despite being a common sanitizer in the fruit industry, chlorine may react with organic matter leading to the formation of toxic by-products. Alternative sustainable disinfection strategies to chlorine are under study to minimize environmental and human health impact. Water-assisted UV-C light (WUV-C) is proposed here as an alternative sanitizing method for strawberries. In this study, strawberries were washed for 1 or 5 min in a tank with 2 or 4 lamps on, each emitting UV-C light at 17.2 W/cm2, or in a chlorine solution (200 ppm, pH 6.5). Moreover, trials with 4 lamps on, together with a washing solution consisting on peracetic acid at 40 or 80 ppm, were carried out. Overall, quality and nutritional parameters of strawberries after treatments were maintained. Changes in color were not noticeable and fruits did not lose firmness. No major changes were observed in antioxidant activity, organic acid, anthocyanin, vitamin C, and total phenolic content. Yeasts and molds were not affected by the WUV-C treatment, and 5 min were needed to significantly reduce total aerobic mesophylls population. However, reductions of artificially inoculated Listeria innocua and Salmonella Typhimurium after WUV-C treatments were comparable to those obtained with chlorine-wash, which were 3.0 log CFU / g. Moreover, WUV-C light was effective to minimize microorganisms remaining in washing water, avoiding cross-contamination and thus, allowing water recirculation. This effect was improved when combining the action of UV-C light with peracetic acid, showing the suitability of this combined treatment, understood as an alternative to chlorine sanitation, for sanitizing strawberries and keeping the populations of pathogenic bacteria in washing water lower than 0.6 ±â€¯0.1 log CFU / mL.


Subject(s)
Disinfectants/pharmacology , Disinfection/methods , Fragaria/microbiology , Peracetic Acid/pharmacology , Ultraviolet Rays , Bacteria/drug effects , Bacteria/radiation effects , Chlorine/pharmacology , Colony Count, Microbial , Food Microbiology , Fruit/microbiology
7.
Food Chem ; 315: 126283, 2020 Jun 15.
Article in English | MEDLINE | ID: mdl-32000076

ABSTRACT

Patulin is a toxic mycotoxin usually associated with apple products. Due to its unhealthy effects for humans, its content is regulated by the food safety authorities. The removal or degradation of this mycotoxin in contaminated apple juices has been studied with different approaches with uneven effectiveness. However, a strategy based on the chemical reaction between patulin and glutathione (GSH), in order to generate the conjugates that are formed during cell detoxification process, is an innovative approach yet to be evaluated. In this work, the formation of patulin-GSH conjugates activated by the application of pulsed light treatments and catalyzed by Fe2+ ions was evaluated. The study of patulin degradation and effect of the GSH/Fe2+ molar ratio showed that a molar ratio of 5 allows an adequate catalytic effect of the metal ions. In addition, mono-substituted patulin-glutathione adducts were identified as the main type of generated conjugates.


Subject(s)
Fruit and Vegetable Juices/analysis , Glutathione/chemistry , Malus/chemistry , Patulin/chemistry , Food Contamination/analysis , Patulin/analysis
8.
Food Sci Technol Int ; 26(5): 403-412, 2020 Jul.
Article in English | MEDLINE | ID: mdl-31870190

ABSTRACT

Calçots are the immature floral stems of the second-year onion (Allium cepa L.) resprouts. Modified atmosphere packaging or vacuum packaging are suitable alternatives to preserve fresh-cut vegetables. The objective of this study was to evaluate the effect of postharvest storage time of raw vegetable stored under controlled atmosphere and used packaging system after minimal processing on the quality of fresh-cut calçots. Calçots used for minimal processing were stored under 1.0 kPa O2 + 2.0 kPa CO2 at 1 ℃ for 30 and 60 days. Fresh-cut calçots were packaged using passive modified atmosphere packaging or vacuum packaging and were stored at 4 ℃ for 15 days. Calçots stored under controlled atmosphere for 30 days presented better retention of quality and in turn, being more suitable for minimally processing. Vacuum packaging preserved the physicochemical quality of fresh-cut calçots better after 15 days. Mesophilic aerobic counts were also higher in fresh-cut calçots stored under modified atmosphere packaging, but all counts were below the recommended limits during and at the end of their shelf-life (15 days). The most suitable conservation strategy might be to store whole calçots under controlled atmosphere for 30 days and after minimally processing, packaged under vacuum in order to extend the shelf-life of fresh-cut calçots.


Subject(s)
Atmosphere , Food Packaging/methods , Food Preservation , Food Storage , Onions , Colony Count, Microbial , Food Analysis , Food Handling , Food Microbiology , Humans , Onions/microbiology , Plant Components, Aerial , Vacuum , Vegetables
9.
Food Microbiol ; 83: 159-166, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31202407

ABSTRACT

The risk posed by outbreaks associated with strawberries together with the safety issues of by-products from chlorine disinfection in the fruit industry has led to a search for alternative sanitizers. The disinfection capacity of peracetic acid (PA) at three concentrations (20, 40 and 80 ppm) and washing times (1 and 2 min) was compared to sodium hypochlorite (200 ppm) (NaClO) treatments and a water control, and its influence on the physico-chemical, biochemical and nutritional quality of strawberries was also studied. Counts on total aerobic mesophilic microorganisms were comparable between NaClO and PA. For yeasts and molds, only NaClO and 80 ppm PA reduced contamination in washing water, but no differences wereobserved in strawberries. Artificially inoculated L.innocua was reduced by at least 4 log cfu/g in strawberry by all the PA treatments, except at 20 ppm PA for 1 min. Total soluble solids, pH, titratable acidity, antioxidant activity and total phenolic content values were maintained after all treatments. Only anthocyanin content was affected. Treatments of 20 and 40 ppm PA did not significantly affect fruit color, and there were no losses on strawberry firmness. PA, as a GRAS substance that has shown potential to reduce microorganisms present in strawberries without any major physicochemical or sensorial alteration, could be a suitable alternative to chlorine disinfection.


Subject(s)
Disinfectants/pharmacology , Disinfection/methods , Food Quality , Fragaria/drug effects , Peracetic Acid/pharmacology , Colony Count, Microbial , Food Contamination/prevention & control , Food Microbiology , Fragaria/microbiology , Fruit/drug effects , Fruit/microbiology , Listeria/drug effects
10.
Int J Food Microbiol ; 297: 11-20, 2019 May 16.
Article in English | MEDLINE | ID: mdl-30852362

ABSTRACT

The effectiveness of ultraviolet C light (UV-C) delivered in water (WUV) or in peroxyacetic acid (PAA) for the inactivation and inhibition of L. monocytogenes and S. enterica in ready-to-eat 'Iceberg lettuce' and baby spinach leaves, was evaluated throughout chilled storage in modified atmosphere packaging (MAP). The inhibition of pathogen's growth by sequential pretreatments with UV-C in PAA and then biocontrol using Pseudomonas graminis CPA-7 was assessed during MAP storage at 5 °C and upon a breakage of the cold-storage chain. In fresh-cut lettuce, 0 1 kJ/m2 UV-C, in water or in 40 mg/L PAA, inactivated both pathogens by up to 2.1 ±â€¯0.7 log10, which improved the efficacy of water-washing by up to 1.9 log10 and showed bacteriostatic effects on both pathogens. In baby spinach leaves, the combination of 0 3 kJ/m2 UV-C and 40 mg/L PAA reduced S. enterica and L. monocytogenes populations by 1.4 ±â€¯0.2 and 2.2 ±â€¯0.3 log10 respectively, which improved water-washing by 0.8 ±â€¯0.2 log10. Combined treatments (0.1 or 0 3 kJ/m2 WUV and 40 mg/L PAA) inactivated both pathogens in the process solution from lettuce or spinach single sanitation, respectively. Pretreating lettuce with UV-C in PAA reduced L. monocytogenes and S. enterica's growth by up to 0.9 ±â€¯0.1 log10 with respect to the PAA-pretreated control after 6 d at 5 °C in MAP. Upon a cold-chain breakage, CPA-7 prevented S. enterica growth in PAA-pretreated lettuce, whereas showed no effect on L. monocytogenes in any of both matrices. Low-dose UV-C in PAA is a suitable preservation strategy for improving the safety of ready-to-eat leafy greens and reducing the risk of cross contamination.


Subject(s)
Food Microbiology/methods , Lactuca/microbiology , Listeria monocytogenes , Peracetic Acid/pharmacology , Pseudomonas/physiology , Salmonella enterica , Spinacia oleracea/microbiology , Colony Count, Microbial , Escherichia coli O157 , Listeria monocytogenes/drug effects , Listeria monocytogenes/radiation effects , Microbial Interactions , Microbial Viability/drug effects , Microbial Viability/radiation effects , Plant Leaves/microbiology , Salmonella enterica/drug effects , Ultraviolet Rays , Water/chemistry
11.
Food Sci Technol Int ; 25(4): 271-281, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30545245

ABSTRACT

Biological preservation methods with bacterial antagonists have emerged as alternatives to chemical sanitizers for extending shelf-life and reducing the population of pathogenic microorganisms. In addition, calcium plays an important role in maintaining the quality of fruit, and postharvest calcium treatments might determine the potential of fruit for processing. The objective of this work was to evaluate the effect of the postharvest application of calcium and biopreservation with the CPA-7 strain of Pseudomonas graminis on the quality parameters of fresh-cut pears. After harvest, whole pears were dipped in calcium chloride solution (1%, w/v) or water (control) for 10 min at 25 ℃ and stored for five months at temperatures ranging from 0 to -0.5 ℃. Both batches of fruit were minimally processed and dipped in a solution containing CPA-7 and an antioxidant solution or kept untreated, and both groups were stored at 4 ℃ for six days. The postharvest calcium treatment had no remarkable effect on the quality of the whole and fresh-cut pears. The enzymatic activities (PPO, PME and PG) related to browning and softening were constant in fresh-cut pears after storage, and the application of P. graminis CPA-7 had a positive effect on the activity of PPO. Finally, a combined effect of the biocontrol agent and calcium treatment was not demonstrated.


Subject(s)
Food Preservation/methods , Fruit/chemistry , Nutritive Value , Pseudomonas/physiology , Pyrus/chemistry , Anti-Infective Agents , Antioxidants , Ascorbic Acid/analysis , Calcium/analysis , Calcium Chloride , Food Handling/methods , Phenol/analysis
12.
Food Microbiol ; 76: 226-236, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30166146

ABSTRACT

The application of microorganisms to control the growth of foodborne pathogens is an alternative to the use of chemical additives. In this work, Pseudomonas graminis CPA-7 was tested as a biocontrol agent against Salmonella enterica and Listeria monocytogenes on fresh-cut pear under conditions that simulate its commercial application at 5 ±â€¯1 °C (under a modified atmosphere and antioxidant solution). The quality of the fresh-cut fruit, including the ethanol and acetaldehyde contents and the volatile profile, was determined. After the storage period, the L. monocytogenes population was reduced by 1-log unit by the presence of CPA-7; however, CPA-7 was not found to have antagonistic activity against S. enterica. The fruit quality (total soluble solids content and titratable acidity) was not negatively affected by CPA-7. The ethanol and acetaldehyde contents increased during the shelf-life of the fruit regardless of the presence of CPA-7. Some volatile compounds were key factors for discriminating samples from the two groups (the control group and the group that was inoculated with CPA-7). Some components are common in the volatile profile of pear (methyl acetate, 3-methylbutyl acetate, 1-butanol, 1-hexanol, and hexanal), and thus increases in their contents could enhance consumers flavour perception.


Subject(s)
Antibiosis , Biological Control Agents/pharmacology , Listeria monocytogenes/physiology , Pseudomonas/physiology , Pyrus/microbiology , Salmonella enterica/physiology , Acetaldehyde/analysis , Colony Count, Microbial , Ethanol/analysis , Flavoring Agents/analysis , Food Microbiology , Fruit/chemistry , Fruit/microbiology , Humans , Listeria monocytogenes/pathogenicity , Pyrus/chemistry , Salmonella enterica/pathogenicity , Volatile Organic Compounds/analysis , Volatile Organic Compounds/metabolism
13.
J Food Sci Technol ; 55(6): 1973-1981, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29892097

ABSTRACT

Brassica vegetables, which include broccoli, kale, cauliflower, and Brussel sprouts, are known for their high glucosinolate content. Glucosinolates and their derived forms namely isothiocyanates are of special interest in the pharmaceutical and food industries due to their antimicrobial, neuroprotective, and anticarcinogenic properties. These compounds are water soluble and heat-sensitive and have been proved to be heavily lost during thermal processing. In addition, previous studies suggested that novel non-thermal technologies such as high pressure processing, pulsed electric fields, or ultraviolet irradiation can affect the glucosinolate content of cruciferous vegetables. The objective of this paper was to review current knowledge about the effects of both thermal and non-thermal processing technologies on the content of glucosinolates and their derived forms in brassica vegetables. This paper also highlights the importance of the incorporation of brassica vegetables into our diet for their health-promoting properties beyond their anticarcinogenic activities.

14.
Int J Food Microbiol ; 282: 16-23, 2018 Oct 03.
Article in English | MEDLINE | ID: mdl-29885973

ABSTRACT

The fungus Penicillium digitatum is the causal agent of the citrus green mould, the major postharvest diseases of citrus fruit. Lesions on the surface of infected fruits first appear as soft areas around the inoculation site, due to maceration of fruit. The macerating activity has been associated with pectinases secreted by the fungus during infection. In order to evaluate the contribution to virulence and macerating activity of the two major polygalacturonases (PGs) secreted by P. digitatum, we have obtained and characterized mutants lacking either pg1 or pg2, the genes encoding PG1 and PG2, respectively. Disease incidence of deletants in either gene was not different from that of the parental strain or ectopic transformants. However, disease progressed more slowly in deletants, especially in those lacking the pg2 gene. The lesions originated by the Δpg2 deletants were not as soft and the pH was not as acid as those originated by either the wild type strain or the ectopic transformants. Total PG activity in the macerated tissue was also lower in fruits infected with the Δpg2 deletants. Interestingly, the macerated tissue of oranges infected with Δpg2 deletants showed around 50% reduction in galacturonic acid content with respect to lesions caused by any other strain.


Subject(s)
Citrus/microbiology , Fungal Proteins/metabolism , Penicillium/enzymology , Penicillium/pathogenicity , Plant Diseases/microbiology , Polygalacturonase/metabolism , Fruit/microbiology , Fungal Proteins/genetics , Penicillium/genetics , Penicillium/isolation & purification , Polygalacturonase/genetics , Virulence
15.
J Sci Food Agric ; 98(13): 4978-4987, 2018 Oct.
Article in English | MEDLINE | ID: mdl-29577335

ABSTRACT

BACKGROUND: Biological preservation with probiotic bacteria has arisen as an alternative to control the growth of foodborne pathogens on food. The objective of this work was to evaluate the effect of postharvest calcium application and biopreservation with Lactobacillus rhamnosus GG on the quality and bioaccessibility of total phenolic content and antioxidant activity in fresh-cut pears. RESULTS: The immersion of whole pears in a calcium chloride solution did not provide added value. Despite the increase in observed activity of PME and PPO enzymes in fresh-cut pears during storage, the browning index and firmness values were constant for all samples. The antioxidant properties, including antioxidant activity, total phenolic content and vitamin C content, were maintained during storage, but a significant decrease was observed after in vitro simulated digestion. Ca/LGG samples showed the lowest calcium content (1.75 ± 0.00 g kg-1 ) after 9 d of storage at 4 °C. In general, the overall visual quality scores were higher in fresh-cut pears treated with L. rhamnosus GG than in non-treated pears, with the highest values in the NoCa/LGG (7.7 ± 0.2) samples after 9 d at 4 °C. CONCLUSION: Fresh-cut pears with a postharvest treatment of calcium and immersed in a solution containing antioxidant agents and probiotic bacteria could be a suitable alternative to dairy products for maintaining the overall quality of fruit for up to 9 d of storage. © 2018 Society of Chemical Industry.


Subject(s)
Calcium Chloride/pharmacology , Food Preservation/methods , Food Preservatives/pharmacology , Fruit/chemistry , Lacticaseibacillus rhamnosus/physiology , Pyrus/chemistry , Antibiosis , Ascorbic Acid/analysis , Food Storage , Fruit/microbiology , Phenols/analysis , Plant Diseases/microbiology , Plant Diseases/prevention & control , Pyrus/microbiology , Quality Control
16.
Food Microbiol ; 69: 123-135, 2018 Feb.
Article in English | MEDLINE | ID: mdl-28941893

ABSTRACT

Blue mould disease caused by Penicillium expansum infection is one of the most important diseases of pome fruit accounting for important economic losses. In the present study, the PeSte12 transcription factor gene was identified, and deletant mutants were produced by gene replacement. Knockout mutants showed a significant decrease of virulence during apple fruit infection. Virulence was affected by the maturity stage of the fruit (immature, mature and over-mature), and disease severity was notably reduced when the apples were stored at 0 °C. The ΔPeSte12 mutants resulted defective in asexual reproduction, producing less conidia, but this characteristic did not correlate with differences in microscopic morphology. In addition, the ΔPeSte12 mutants produced higher quantity of hydrogen peroxide than the wild type strain. Gene expression analysis revealed that PeSte12 was induced over time during apple infection compared to axenic growth, particularly from 2 dpi, reinforcing its role in virulence. Analysis of transcriptional abundance of several genes in ΔPeSte12 mutants showed that in most of the evaluated genes, PeSte12 seemed to act as a negative regulator during axenic growth, as most of them exhibited an increasing expression pattern along the time period evaluated. The highest expression values corresponded to detoxification, ATPase activity, protein folding and basic metabolism. Gene expression analysis during apple infection showed that 3 out of 9 analysed genes were up regulated; thus, PeSte12 seemed to exert a positive control to particular type of aldolase. These results demonstrate the PeSte12 transcription factor could play an important role in P. expansum's virulence and asexual reproduction.


Subject(s)
Fruit/microbiology , Fungal Proteins/metabolism , Malus/microbiology , Penicillium/metabolism , Plant Diseases/microbiology , Transcription Factors/metabolism , Fungal Proteins/genetics , Penicillium/genetics , Penicillium/growth & development , Penicillium/pathogenicity , Spores, Fungal/genetics , Spores, Fungal/growth & development , Spores, Fungal/metabolism , Spores, Fungal/pathogenicity , Transcription Factors/genetics , Virulence
17.
Int J Food Microbiol ; 262: 55-62, 2017 Dec 04.
Article in English | MEDLINE | ID: mdl-28964998

ABSTRACT

To further gain insight into the mechanism by which the biopreservative bacterium Pseudomonas graminis CPA-7 develops its antimicrobial activity, we have examined the effect that the prior interaction stablished by this bacterium and two foodborne pathogens on fresh-cut pear, has on their capacity to colonize human epithelial cells (Caco-2 cell line) which is crucial for establishing infection. CPA-7 inhibited the growth of L. monocytogenes and S. enterica subsp. enterica ser. Enteritidis by 5.5 and 3.1 log10, respectively, after 7d of interaction at 10°C. Furthermore, CPA-7 attenuated the adherence of S. enterica to Caco-2 cells by 0.8 log10 regardless of the pre-adaptation on the fruit. Conversely, the adhesiveness of L. monocytogenes was not influenced by the interaction with the antagonist but it was reduced by 0.5 log10 after incubation on the food matrix. Pathogen-antagonist-food matrix interaction was associated to a significant reduction of the relative invasiveness of both pathogens, by 1.3 log10 in the case of L. monocytogenes and to an undetectable level (below 5CFU/g fruit) for S. enterica. CPA-7 can adhere to and internalize into intestinal epithelium which enables it for competition. Its adherence positively correlates to the multiplicity of infection (MOI) with respect to Caco-2 cells, increasing by 0.6 log10 in an MOI range of 0.1:1 to 100:1. For the same levels of inoculum, internalized cells could only be detected after 7d of pre-adaptation in the fruit (pH4.5-5.0). However, the combination of gastrointestinal digestion and habituation on the fruit resulted in a significant reduction of CPA-7 populations (by 2 log10 more after 7d of incubation than on inoculation day) as well as in the decrease of its adhesiveness (by 0.8 log10) and invasiveness (to undetectable levels).


Subject(s)
Bacterial Adhesion/physiology , Caco-2 Cells/microbiology , Fruit/microbiology , Listeria monocytogenes/growth & development , Probiotics/metabolism , Pseudomonas/physiology , Pyrus/microbiology , Salmonella enterica/growth & development , Cell Line, Tumor , Colony Count, Microbial , Foodborne Diseases/microbiology , Gastrointestinal Tract/microbiology , Humans
18.
Food Microbiol ; 62: 275-281, 2017 Apr.
Article in English | MEDLINE | ID: mdl-27889159

ABSTRACT

Survival and virulence of foodborne pathogens can be influenced by environmental factors such as the intrinsic properties of food as well as the extrinsic properties that contribute to food shelf life (e.g., temperature and gas atmosphere). The direct contribution of food matrix characteristics on the survival of L. monocytogenes during fresh-cut fruit shelf life is not very well understood. In addition, the gastrointestinal tract is the primary route of listeriosis infection and penetration of the intestinal epithelial cell barrier is the first step in the infection process. Hence, the pathogenic potential of L. monocytogenes, measured as the capability for the organism to survive a simulated gastrointestinal tract and the proportion of cells able to subsequently adhere to and invade differentiated Caco-2 cells, subjected to fresh-cut pear and melon shelf life, was investigated. Samples were inoculated, stored at 10 °C for 7 days and evaluated after inoculation and again after 2 and 7 days of storage. A decrease in L. monocytogenes' capacity to survive a simulated gastrointestinal tract was observed with increasing storage time, regardless of the fruit matrix evaluated. Furthermore, L. monocytogenes placed on fresh-cut pear and melon was subjected to an attachment and invasion assay after crossing the simulated gastrointestinal tract. After inoculation, pathogen on fresh-cut pear showed 5-fold more capacity to adhere to Caco-2 cells than pathogen on fresh-cut melon. After 2 days of storage, L. monocytogenes grown on fresh-cut melon showed similar adhesive capacity (1.11%) than cells grown on pear (1.83%), but cells grown on melon had the higher invasive capacity (0.0093%). We can conclude that minimally processed melon could represent a more important hazard than pear under the studied shelf life.


Subject(s)
Cucurbitaceae/microbiology , Food Preservation , Food Storage , Fruit/microbiology , Listeria monocytogenes/pathogenicity , Pyrus/microbiology , Bacterial Adhesion , Caco-2 Cells , Colony Count, Microbial , Consumer Product Safety , Food Contamination/prevention & control , Food Handling , Food Microbiology , Humans , Listeria monocytogenes/growth & development , Listeria monocytogenes/isolation & purification , Temperature
19.
J Sci Food Agric ; 97(9): 3077-3080, 2017 Jul.
Article in English | MEDLINE | ID: mdl-27813092

ABSTRACT

BACKGROUND: In recent years, improved detection methods and increased fresh-cut processing of produce have led to an increased number of outbreaks associated with fresh fruits and vegetables. During fruit and vegetable processing, natural protective barriers are removed and tissues are cut, causing nutrient rich exudates and providing attachment sites for microbes. Consequently, fresh-cut produce is more susceptible to microbial proliferation than whole produce. RESULTS: The aim of this study was to examine the impact of storage temperature on the growth and survival of Listeria monocytogenes and Salmonella enterica on a fresh-cut 'Conference' pear over an 8 day storage period. Pears were cut, dipped in antioxidant solution, artificially inoculated with L. monocytogenes and S. enterica, packed under modified atmospheric conditions simulating commercial applications and stored in properly refrigerated conditions (constant storage at 4 °C for 8 days) or in temperature abuse conditions (3 days at 4 °C plus 5 days at 8 °C). After 8 days of storage, both conditions resulted in a significant decrease of S. enterica populations on pear wedges. In contrast, when samples were stored at 4 °C for 8 days, L. monocytogenes populations increased 1.6 logarithmic units, whereas under the temperature abuse conditions, L. monocytogenes populations increased 2.2 logarithmic units. CONCLUSION: Listeria monocytogenes was able to grow on fresh-cut pears processed under the conditions described here, despite low pH, refrigeration and use of modified atmosphere. © 2016 Society of Chemical Industry.


Subject(s)
Food Handling/methods , Fruit/chemistry , Listeria monocytogenes/growth & development , Pyrus/microbiology , Salmonella enterica/growth & development , Food Contamination/prevention & control , Food Preservation , Food Storage , Fruit/microbiology , Microbial Viability , Pyrus/chemistry , Refrigeration
20.
Int J Food Microbiol ; 235: 93-102, 2016 Oct 17.
Article in English | MEDLINE | ID: mdl-27479695

ABSTRACT

Green mould, resulting from Penicillium digitatum, is the most important postharvest disease of citrus. In a previous study, the PdSte12 transcription factor gene was identified, and disruption mutants were obtained. In the present study, the ΔPdSte12 mutants generated through gene replacement showed significantly reduced virulence during citrus fruit infection. Virulence was affected not only in mature fruit but also in immature fruit, and disease severity was markedly reduced when the oranges were stored at 20 or 4°C. In addition, the ΔPdSte12 mutants were defective in asexual reproduction, producing few conidia. The conidiophores of these mutants had longer metulae with fewer branches at the tip of the hyphae. Gene expression analysis revealed that PdSte12 might act as a negative regulator of several transporter-encoding genes and a positive regulator of two sterol demethylases, all of which are involved in fungicide resistance and fungal virulence. Moreover, PdSte12 exhibited the negative regulation of another transcription factor PdMut3, putatively involved in fungal pathogenesis but with no effect on the MAPK SLT2 P. digitatum orthologue belonging to different transcription pathways relevant to cell integrity. These results indicate the PdSte12 transcription factor is functionally conserved in P. digitatum for infection and asexual reproduction, similar to other Ste12 fungal plant pathogens.


Subject(s)
Citrus sinensis/microbiology , Fruit/microbiology , Penicillium/genetics , Penicillium/pathogenicity , Plant Diseases/microbiology , Spores, Fungal/growth & development , Transcription Factors/genetics , Fungal Proteins/genetics , Fungicides, Industrial , Mutation/genetics , Reproduction, Asexual/genetics , Spores, Fungal/metabolism , Virulence/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...