Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Pharmaceutics ; 15(6)2023 Jun 05.
Article in English | MEDLINE | ID: mdl-37376103

ABSTRACT

The development of biomaterial platforms for dispensing reagents of interest such as antioxidants, growth factors or antibiotics based on functional hydrogels represents a biotechnological solution for many challenges that the biomedicine field is facing. In this context, in situ dosing of therapeutic components for dermatological injuries such as diabetic foot ulcers is a relatively novel strategy to improve the wound healing process. Hydrogels have shown more comfort for the treatment of wounds due to their smooth surface and moisture, as well as their structural affinity with tissues in comparison to hyperbaric oxygen therapy, ultrasound, and electromagnetic therapies, negative pressure wound therapy or skin grafts. Macrophages, one of the most important cells of the innate immune system, have been described as the key not only in relation to the host immune defense, but also in the progress of wound healing. Macrophage dysfunction in chronic wounds of diabetic patients leads to a perpetuating inflammatory environment and impairs tissue repair. Modulating the macrophage phenotype from pro-inflammatory (M1) to anti-inflammatory (M2) could be a strategy for helping to improve chronic wound healing. In this regard, a new paradigm is found in the development of advanced biomaterials capable of inducing in situ macrophage polarization to offer an approach to wound care. Such an approach opens a new direction for the development of multifunctional materials in regenerative medicine. This paper surveys emerging hydrogel materials and bioactive compounds being investigated to induce the immunomodulation of macrophages. We propose four potential functional biomaterials for wound healing applications based on novel biomaterial/bioactive compound combination that are expected to show synergistic beneficial outcomes for the local differentiation of macrophages (M1-M2) as a therapeutic strategy for chronic wound healing improvement.

2.
Int Wound J ; 19(1): 100-113, 2022 Jan.
Article in English | MEDLINE | ID: mdl-33951280

ABSTRACT

Wound healing is a complex process of communication between growth factors, reactive species of oxygen, cells, signalling pathways, and cytokines in the extracellular matrix, in which growth factors are the key regulators. In humans, the main regulators of the cellular responses in wound healing are five growth factors, namely EGF, bFGF, VEGF, and TGF-ß1. On the other hand, antioxidants such as astaxanthin, beta-carotene, epigallocatechin gallate, delphinidin, and curcumin have been demonstrated to stimulate cell proliferation, migration and angiogenesis, and control inflammation, to suggest a practical approach to design new strategies to treat non-healing cutaneous conditions. Based on the individual effects of growth factors and antioxidants, it may be envisioned that the use of both types of bioactives in wound healing formulations may have an additive or synergistic effect on the healing potential. This review addresses the effect of growth factors and antioxidants on wound healing-related processes. Furthermore, a prospective on their potential additive or synergistic effect on wound healing formulations, based on their individual effects, is presented. This may serve as a guide for the development of a new generation of wound healing formulations.


Subject(s)
Antioxidants , Intercellular Signaling Peptides and Proteins/therapeutic use , Wound Healing , Antioxidants/therapeutic use , Cell Proliferation , Fibroblast Growth Factor 2 , Humans , Wound Healing/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...