Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Bioinformatics ; 22(1): 527, 2021 Oct 29.
Article in English | MEDLINE | ID: mdl-34715787

ABSTRACT

BACKGROUND: In the pharmaceutical industry, competing for few validated drug targets there is a drive to identify new ways of therapeutic intervention. Here, we attempted to define guidelines to evaluate a target's 'fitness' based on its node characteristics within annotated protein functional networks to complement contingent therapeutic hypotheses. RESULTS: We observed that targets of approved, selective small molecule drugs exhibit high node centrality within protein networks relative to a broader set of investigational targets spanning various development stages. Targets of approved drugs also exhibit higher centrality than other proteins within their respective functional class. These findings expand on previous reports of drug targets' network centrality by suggesting some centrality metrics such as low topological coefficient as inherent characteristics of a 'good' target, relative to other exploratory targets and regardless of its functional class. These centrality metrics could thus be indicators of an individual protein's 'fitness' as potential drug target. Correlations between protein nodes' network centrality and number of associated publications underscored the possibility of knowledge bias as an inherent limitation to such predictions. CONCLUSIONS: Despite some entanglement with knowledge bias, like structure-oriented 'druggability' assessments of new protein targets, centrality metrics could assist early pharmaceutical discovery teams in evaluating potential targets with limited experimental proof of concept and help allocate resources for an effective drug discovery pipeline.


Subject(s)
Pharmaceutical Preparations , Proteins , Drug Discovery
2.
Bioorg Med Chem ; 40: 116163, 2021 06 15.
Article in English | MEDLINE | ID: mdl-33932711

ABSTRACT

Bruton's tyrosine kinase (BTK) is a cytoplasmic, non-receptor tyrosine kinase member of the TEC family of tyrosine kinases. Pre-clinical and clinical data have shown that targeting BTK can be used for the treatment for B-cell disorders. Here we disclose the discovery of a novel imidazo[4,5-b]pyridine series of potent, selective reversible BTK inhibitors through a rational design approach. From a starting hit molecule 1, medicinal chemistry optimization led to the development of a lead compound 30, which exhibited 58 nM BTK inhibitory potency in human whole blood and high kinome selectivity. Additionally, the compound demonstrated favorable pharmacokinetics (PK), and showed potent dose-dependent efficacy in a rat CIA model.


Subject(s)
Agammaglobulinaemia Tyrosine Kinase/antagonists & inhibitors , Drug Discovery , Imidazoles/pharmacology , Protein Kinase Inhibitors/pharmacology , Pyridines/pharmacology , Agammaglobulinaemia Tyrosine Kinase/metabolism , Dose-Response Relationship, Drug , Humans , Imidazoles/chemical synthesis , Imidazoles/chemistry , Molecular Structure , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Pyridines/chemical synthesis , Pyridines/chemistry , Structure-Activity Relationship
3.
J Chem Inf Model ; 60(11): 5457-5474, 2020 11 23.
Article in English | MEDLINE | ID: mdl-32813975

ABSTRACT

Accurate ranking of compounds with regards to their binding affinity to a protein using computational methods is of great interest to pharmaceutical research. Physics-based free energy calculations are regarded as the most rigorous way to estimate binding affinity. In recent years, many retrospective studies carried out both in academia and industry have demonstrated its potential. Here, we present the results of large-scale prospective application of the FEP+ method in active drug discovery projects in an industry setting at Merck KGaA, Darmstadt, Germany. We compare these prospective data to results obtained on a new diverse, public benchmark of eight pharmaceutically relevant targets. Our results offer insights into the challenges faced when using free energy calculations in real-life drug discovery projects and identify limitations that could be tackled by future method development. The new public data set we provide to the community can support further method development and comparative benchmarking of free energy calculations.


Subject(s)
Drug Discovery , Ligands , Prospective Studies , Retrospective Studies , Thermodynamics
4.
ChemMedChem ; 14(2): 217-223, 2019 01 22.
Article in English | MEDLINE | ID: mdl-30521698

ABSTRACT

Bruton's tyrosine kinase (Btk) is an attractive target for the treatment of a wide array of B-cell malignancies and autoimmune diseases. Small-molecule covalent irreversible Btk inhibitors targeting Cys481 have been developed for the treatment of such diseases. In clinical trials, probe molecules are required in occupancy studies to measure the level of engagement of the protein by these covalent irreversible inhibitors. The result of this pharmacodynamic (PD) activity provides guidance for appropriate dosage selection to optimize inhibition of the drug target and correlation of target inhibition with disease treatment efficacy. This information is crucial for successful evaluation of drug candidates in clinical trials. Based on the pyridine carboxamide scaffold of a novel solvent-accessible pocket (SAP) series of covalent irreversible Btk inhibitors, we successfully developed a potent and selective affinity-based biotinylated probe 12 (2-[(4-{4-[5-(1-{5-[(3aS,4S,6aR)-2-oxo-hexahydro-1H-thieno[3,4-d]imidazol-4-yl]pentanamido}-3,6,9,12-tetraoxapentadecan-15-amido)pentanoyl]piperazine-1-carbonyl}phenyl)amino]-6-[1-(prop-2-enoyl)piperidin-4-yl]pyridine-3-carboxamide). Compound 12 has been used in Btk occupancy assays for preclinical studies to determine the therapeutic efficacy of Btk inhibition in two mouse lupus models driven by TLR7 activation and type I interferon.


Subject(s)
Biological Assay/methods , Piperazines/chemistry , Protein Kinase Inhibitors/analysis , Pyridines/chemistry , Agammaglobulinaemia Tyrosine Kinase/antagonists & inhibitors , Animals , Biotin/chemistry , Mice , Models, Animal , Molecular Structure , Piperazines/chemical synthesis , Protein Kinase Inhibitors/metabolism , Pyridines/chemical synthesis , Structure-Activity Relationship
5.
Bioorg Med Chem Lett ; 28(20): 3307-3311, 2018 11 01.
Article in English | MEDLINE | ID: mdl-30243592

ABSTRACT

Bruton's tyrosine kinase (Btk) is a member of the Tec kinase family that is expressed in cells of hematopoietic lineage (e.g. B cells, macrophages, monocytes, and mast cells). Small molecule covalent irreversible Btk inhibitors targeting Cys481 within the ATP-binding pocket have been applied in the treatment of B-cell malignancies. Starting from a fragment, we discovered a novel series of potent covalent irreversible Btk inhibitors that bear N-linked groups occupying the solvent accessible pocket (SAP) of the active site of the Btk kinase domain. The hit molecules, however, displayed high P-gp mediated efflux ratio (ER) and poor A-B permeability in Caco-2 assay. By decreasing tPSA, installing steric hindrance and adjusting clogP, one top molecule 9 was discovered, which showed a 99% decrease in efflux ratio and a 90-fold increase in A-B permeability compared to hit molecule 1.


Subject(s)
Agammaglobulinaemia Tyrosine Kinase/antagonists & inhibitors , Niacinamide/pharmacology , Protein Kinase Inhibitors/pharmacology , Adenine/analogs & derivatives , Agammaglobulinaemia Tyrosine Kinase/chemistry , Animals , Caco-2 Cells , Catalytic Domain , Humans , Mice , Molecular Structure , Niacinamide/analogs & derivatives , Niacinamide/chemical synthesis , Niacinamide/pharmacokinetics , Permeability , Piperidines , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/pharmacokinetics , Pyrazoles/pharmacology , Pyrimidines/pharmacology
6.
FEBS J ; 283(14): 2690-700, 2016 07.
Article in English | MEDLINE | ID: mdl-26411300

ABSTRACT

B-cell lymphoma 2 (BCL-2) family proteins mediate mitochondrial apoptosis by regulating mitochondrial outer membrane permeabilization (MOMP), which leads to the activation of the downstream caspase cascade to execute apoptosis. The pro-apoptotic and anti-apoptotic BCL-2 proteins function through protein-protein interactions in soluble and membrane-associated states. How soluble BCL-2 proteins interact is well understood. Anti-apoptotic proteins, such as BCL-2 and BCL-xL, and the pro-apoptotic effectors of MOMP, including BAK and BAX, interact with pro-apoptotic BCL-2 homology 3 (BH3)-only proteins similarly. Whereas anti-apoptotic BCL-2 proteins tightly bind all the BH3-only proteins to block apoptosis initiation, the effector BCL-2 proteins are potently triggered by specific BH3-only proteins to undergo conformational changes, membrane association and insertion, oligomerization, and pore formation. The anti-apoptotic BCL-2 proteins also inhibit the activated effectors. p53 is a direct BAX activator inhibited by BCL-xL, defining a prototype non-canonical modulator of BCL-2 proteins-mediated MOMP. How BCL-2 proteins cooperate in the presence of membranes remains poorly understood, impeding our understanding of MOMP and apoptosis. Here, we highlight the latest structural views of MOMP by BCL-2 proteins.


Subject(s)
Apoptosis/physiology , Proto-Oncogene Proteins c-bcl-2/metabolism , Animals , Humans , Mitochondrial Membranes/metabolism , Models, Biological , Models, Molecular , Permeability , Protein Conformation , Protein Interaction Domains and Motifs , Protein Multimerization , Proto-Oncogene Proteins c-bcl-2/chemistry , Signal Transduction , Tumor Suppressor Protein p53/antagonists & inhibitors , Tumor Suppressor Protein p53/chemistry , Tumor Suppressor Protein p53/metabolism , bcl-2-Associated X Protein/metabolism , bcl-X Protein/chemistry , bcl-X Protein/metabolism
7.
ACS Chem Biol ; 9(6): 1294-302, 2014 Jun 20.
Article in English | MEDLINE | ID: mdl-24650357

ABSTRACT

The declining effectiveness of current antibiotics due to the emergence of resistant bacterial strains dictates a pressing need for novel classes of antimicrobial therapies, preferably against molecular sites other than those in which resistance mutations have developed. Dihydropteroate synthase (DHPS) catalyzes a crucial step in the bacterial pathway of folic acid synthesis, a pathway that is absent in higher vertebrates. As the target of the sulfonamide class of drugs that were highly effective until resistance mutations arose, DHPS is known to be a valuable bacterial Achilles heel that is being further exploited for antibiotic development. Here, we report the discovery of the first known allosteric inhibitor of DHPS. NMR and crystallographic studies reveal that it engages a previously unknown binding site at the dimer interface. Kinetic data show that this inhibitor does not prevent substrate binding but rather exerts its effect at a later step in the catalytic cycle. Molecular dynamics simulations and quasi-harmonic analyses suggest that the effect of inhibitor binding is transmitted from the dimer interface to the active-site loops that are known to assume an obligatory ordered substructure during catalysis. Together with the kinetics results, these structural and dynamics data suggest an inhibitory mechanism in which binding at the dimer interface impacts loop movements that are required for product release. Our results potentially provide a novel target site for the development of new antibiotics.


Subject(s)
Bacillus anthracis/enzymology , Dihydropteroate Synthase/chemistry , Enzyme Inhibitors/pharmacology , Allosteric Regulation , Allosteric Site , Binding Sites , Catalysis , Catalytic Domain , Computational Biology , Crystallography, X-Ray , Dihydropteroate Synthase/metabolism , Humans , Kinetics , Magnetic Resonance Spectroscopy , Models, Molecular , Molecular Dynamics Simulation , Protein Binding , Protein Conformation , Surface Plasmon Resonance
SELECTION OF CITATIONS
SEARCH DETAIL
...