Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Spectrosc ; 62(2): 213-9, 2008 Feb.
Article in English | MEDLINE | ID: mdl-18284798

ABSTRACT

The aim of this work was to perform highly localized spectroscopic surface measurements by combining time-resolved laser spectroscopy and scanning near-field optical microscopy. The final purpose of that was to study surface sorption at the molecular level of trivalent ions in the framework of nuclear waste disposal assessment. Time-resolved laser spectroscopy presents the advantages of being selective, sensitive, and noninvasive and scanning near-field optical microscopy is a promising technique for high resolution surface speciation. Investigation of the interaction between trivalent europium and a monocrystalline alumina (1102) surface was made using different conditions of concentration and pH. We found that the distribution of sorbed europium was always homogeneous with a decay time of europium (III) equal to 350 micros+/-15 micros. On the other hand, carbonate species with a decay time of 210 micros+/-10 micros or other hydroxide species with a decay time of 180 micros+/-10 micros were detected on the surface when a higher concentration or a higher pH solution, respectively, were used. Distribution of these species was heterogeneous and their associated fluorescence signal was relatively high, evoking a precipitated form. X-ray photoelectron spectroscopy (XPS) was also used on the same samples as a complementary technique. A binding energy of 1135.1 eV was obtained for the sorbed europium and another binding energy of 1134.4 eV was obtained for the hydroxide species, thus confirming the presence of two kinds of species on the surface.

2.
J Phys Chem B ; 110(23): 11259-66, 2006 Jun 15.
Article in English | MEDLINE | ID: mdl-16771394

ABSTRACT

Time-resolved fluorescence spectroscopy (TRFS) was applied to an aluminate glass sample doped with Eu3+ cation as a fluorescent probe of the chemical environment and local symmetry. Conventional far-field experiments revealed the presence of two different phases: an amorphous phase featured by a highly disordered environment surrounding the Eu3+ cation and a more ordered polycrystalline phase that exhibits a significant increase in the Eu3+ fluorescence decay time compared to that of the amorphous phase. Near-field fluorescence spectra and decay kinetics were recorded in the frontier region between the two phases using a home-built scanning near-field optical microscope. SNOM-TRFS experiments confirmed the presence of local heterogeneities in this part of the glass at a sub-micrometric spatial scale. Polycrystalline sites featured an important shear-force interaction with the probing fiber optic tip, a longer fluorescence decay time, and a higher Stark splitting of the 5D0 --> 7FJ (J = 1-4) electronic transitions of the Eu3+ cations.

SELECTION OF CITATIONS
SEARCH DETAIL
...