Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Neurosci Biobehav Rev ; 68: 891-910, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27339691

ABSTRACT

We believe that the missing keystone to design effective and efficient biofeedback and neurofeedback protocols is a comprehensive model of the mechanisms of feedback learning. In this manuscript we review the learning models in behavioral, developmental and cognitive psychology, and derive a synthetic model of the psychological perspective on biofeedback. We afterwards review the neural correlates of feedback learning mechanisms, and present a general neuroscience model of biofeedback. We subsequently show how biomedical engineering principles can be applied to design efficient feedback protocols. We finally present an integrative psychoengineering model of the feedback learning processes, and provide new guidelines for the efficient design of biofeedback and neurofeedback protocols. We identify five key properties, (1) perceptibility=can the subject perceive the biosignal?, (2) autonomy=can the subject regulate by himself?, (3) mastery=degree of control over the biosignal, (4) motivation=rewards system of the biofeedback, and (5) learnability=possibility of learning. We conclude with guidelines for the investigation and promotion of these properties in biofeedback protocols.


Subject(s)
Neurofeedback , Humans , Learning
2.
Int J Neural Syst ; 25(8): 1550032, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26560459

ABSTRACT

In this paper, we introduce a novel entropy measure, termed epoch-based entropy. This measure quantifies disorder of EEG signals both at the time level and spatial level, using local density estimation by a Hidden Markov Model on inter-channel stationary epochs. The investigation is led on a multi-centric EEG database recorded from patients at an early stage of Alzheimer's disease (AD) and age-matched healthy subjects. We investigate the classification performances of this method, its robustness to noise, and its sensitivity to sampling frequency and to variations of hyperparameters. The measure is compared to two alternative complexity measures, Shannon's entropy and correlation dimension. The classification accuracies for the discrimination of AD patients from healthy subjects were estimated using a linear classifier designed on a development dataset, and subsequently tested on an independent test set. Epoch-based entropy reached a classification accuracy of 83% on the test dataset (specificity = 83.3%, sensitivity = 82.3%), outperforming the two other complexity measures. Furthermore, it was shown to be more stable to hyperparameter variations, and less sensitive to noise and sampling frequency disturbances than the other two complexity measures.


Subject(s)
Alzheimer Disease/diagnosis , Alzheimer Disease/physiopathology , Brain/physiopathology , Electroencephalography/methods , Signal Processing, Computer-Assisted , Aged , Alzheimer Disease/classification , Area Under Curve , Databases as Topic , Entropy , Humans , Linear Models , Markov Chains , ROC Curve , Rest , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...