Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 576(7786): 232-236, 2019 12.
Article in English | MEDLINE | ID: mdl-31802002

ABSTRACT

Remote observations of the solar photospheric light scattered by electrons (the K-corona) and dust (the F-corona or zodiacal light) have been made from the ground during eclipses1 and from space at distances as small as 0.3 astronomical units2-5 to the Sun. Previous observations6-8 of dust scattering have not confirmed the existence of the theoretically predicted dust-free zone near the Sun9-11. The transient nature of the corona has been well characterized for large events, but questions still remain (for example, about the initiation of the corona12 and the production of solar energetic particles13) and for small events even its structure is uncertain14. Here we report imaging of the solar corona15 during the first two perihelion passes (0.16-0.25 astronomical units) of the Parker Solar Probe spacecraft13, each lasting ten days. The view from these distances is qualitatively similar to the historical views from ground and space, but there are some notable differences. At short elongations, we observe a decrease in the intensity of the F-coronal intensity, which is suggestive of the long-sought dust free zone9-11. We also resolve the fine-scale plasma structure of very small eruptions, which are frequently ejected from the Sun. These take two forms: the frequently observed magnetic flux ropes12,16 and the predicted, but not yet observed, magnetic islands17,18 arising from the tearing-mode instability in the current sheet. Our observations of the coronal streamer evolution confirm the large-scale topology of the solar corona, but also reveal that, as recently predicted19, streamers are composed of yet smaller substreamers channelling continual density fluctuations at all visible scales.

2.
J Geophys Res Space Phys ; 124(2): 837-860, 2019 Feb.
Article in English | MEDLINE | ID: mdl-32908809

ABSTRACT

Following previous investigations of quasiperiodic plasma density structures in the solar wind at 1 AU, we show using the Helios1 and Helios2 data their first identification in situ in the inner heliosphere at 0.3, 0.4, and 0.6 AU. We present five events of quasiperiodic density structures with time scales ranging from a few minutes to a couple of hours in slow solar wind streams. Where possible, we locate the solar source region of these events using photospheric field maps from the Mount Wilson Observatory as input for the Wang-Sheeley-Arge model. The detailed study of the plasma properties of these structures is fundamental to understanding the physical processes occurring at the origin of the release of solar wind plasma. Temperature changes associated with the density structures are consistent with these periodic structures developing in the solar atmosphere as the solar wind is formed. One event contains a flux rope, suggesting that the solar wind was formed as magnetic reconnection opened up a previously closed flux tube at the Sun. This study highlights the types of structures that Parker Solar Probe and the upcoming Solar Orbiter mission will observe, and the types of data analyses these missions will enable. The data from these spacecrafts will provide additional in situ measurements of the solar wind properties in the inner heliosphere allowing, together with the information of the other interplanetary probes, a more comprehensive study of solar wind formation.

3.
Astrophys J ; 880(1)2019 Jul 25.
Article in English | MEDLINE | ID: mdl-31920207

ABSTRACT

To adequately constrain the frequency of energy deposition in active region cores in the solar corona, systematic comparisons between detailed models and observational data are needed. In this paper, we describe a pipeline for forward modeling active region emission using magnetic field extrapolations and field-aligned hydrodynamic models. We use this pipeline to predict time-dependent emission from active region NOAA 1158 for low-, intermediate-, and high-frequency nanoflares. In each pixel of our predicted multi-wavelength, time-dependent images, we compute two commonly used diagnostics: the emission measure slope and the time lag. We find that signatures of the heating frequency persist in both of these diagnostics. In particular, our results show that the distribution of emission measure slopes narrows and the mean decreases with decreasing heating frequency and that the range of emission measure slopes is consistent with past observational and modeling work. Furthermore, we find that the time lag becomes increasingly spatially coherent with decreasing heating frequency while the distribution of time lags across the whole active region becomes more broad with increasing heating frequency. In a follow-up paper, we train a random forest classifier on these predicted diagnostics and use this model to classify real observations of NOAA 1158 in terms of the underlying heating frequency.

SELECTION OF CITATIONS
SEARCH DETAIL
...