Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Microorganisms ; 8(1)2020 Jan 07.
Article in English | MEDLINE | ID: mdl-31936180

ABSTRACT

Little is known about establishment success of the arbuscular mycorrhizal fungal (AMF) inocula and their effects on a soil-indigenous community of AMF. In this study, we assessed the effect of introducing Rhizophagus irregularis DAOM-197198 in soil under field condition on the community composition of indigenous AMF in the roots of corn (Zea mays), soybean (Glycine max), and wheat (Triticum aestivum). Three field trials were conducted with inoculated and non-inoculated plots. Four to ten roots and their rhizosphere soil samples of two growth stages for corn and wheat, and one growing stage of soybean, were collected, totalling 122 root and soil samples. Root colonization was measured microscopically, and the fungal communities were determined by paired-end Illumina MiSeq amplicon sequencing using 18S rDNA marker. After quality trimming and merging of paired ends, 6.7 million sequences could be assigned to 414 different operational taxonomic units. These could be assigned to 68 virtual taxa (VT) using the AMF reference sequence database MaarjAM. The most abundant VT corresponded to R. irregularis. The inoculation treatment did not influence the presence of R. irregularis, or AMF community diversity in roots. This seems to indicate that inoculation with R. irregularis DAOM-197198 does not change the indigenous AMF community composition, probably because it is already present in high abundance naturally.

2.
Mycorrhiza ; 26(7): 721-33, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27220880

ABSTRACT

Rhizophagus irregularis (previously named Glomus irregulare) is one of the most widespread and common arbuscular mycorrhizal fungal (AMF) species. It has been recovered worldwide in agricultural and natural soils, and the isolate DAOM-197198 has been utilized as a commercial inoculant for two decades. Despite the ecological and economical importance of this taxon, specific markers for quantification of propagules by quantitative real-time PCR (qPCR) are extremely limited and none have been rigorously validated for quality control of manufactured products such as biofertilizers. From the sequencing of 14 complete AMF mitochondrial (mt) genomes, a qPCR assay using a hydrolysis probe designed in the single copy cox3-rnl intergenic region was tested and validated to specifically and accurately quantify the spores of R. irregularis isolate DAOM-197198. Specificity tests were performed using standard PCR and qPCR, and results clearly showed that the primers specifically amplified the isolate DAOM-197198, yielding a PCR product of 106 bp. According to the qPCR analyses on spores produced in vitro, the average copy number of mt genomes per spore was 3172 ± 304 SE (n = 6). Quantification assays were successfully undertaken on known and unknown samples in liquid suspensions and commercial dry formulations to show the accuracy, precision, robustness, and reproducibility of the qPCR assay. This study provides a powerful molecular toolkit specifically designed to quantify spores of the model AMF isolate DAOM-197198. The approach of molecular toolkit used in our study could be applied to other AMF taxa and will be useful to research institutions and governmental and industrial laboratories running routine quality control of AMF-based products.


Subject(s)
DNA, Fungal/genetics , Genome, Fungal/genetics , Genome, Mitochondrial/genetics , Glomeromycota/genetics , Real-Time Polymerase Chain Reaction/methods , Genetic Markers , Mycorrhizae/genetics
3.
Fungal Biol ; 117(6): 389-98, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23809649

ABSTRACT

Melampsora medusae (Mm), one of the causal agents of poplar rust, is classified as an A2 quarantine pest for European Plant Protection Organization (EPPO) and its presence in Europe is strictly controlled. Two formae speciales have been described within Mm, Melampsora medusae f. sp. deltoidae (Mmd), and Melampsora medusae f. sp. tremuloidae (Mmt) on the basis of their pathogenicity on Populus species from the section Aigeiros (e.g. Populus deltoides) or Populus (e.g. Populus tremuloides), respectively. In this study, a real-time polymerase chain reaction (PCR) assay was developed allowing the detection of Mmd, the forma specialis that is economically harmful. A set of primers and hydrolysis probe were designed based on sequence polymorphisms in the large ribosomal RNA subunit (28S). The real-time PCR assay was optimized and performance criteria of the detection method, i.e. sensitivity, specificity, repeatability, reproducibility, and robustness, were assessed. The real-time PCR method was highly specific and sensitive and allowed the detection of one single urediniospore of Mmd in a mixture of 2 mg of urediniospores of other Melampsora species. This test offers improved specificity over currently existing conventional PCR tests and can be used for specific surveys in European nurseries and phytosanitary controls, in order to avoid introduction and spread of this pathogen in Europe.


Subject(s)
Basidiomycota/isolation & purification , Mycology/methods , Plant Diseases/microbiology , Real-Time Polymerase Chain Reaction/methods , Basidiomycota/genetics , DNA Primers/genetics , Europe , Oligonucleotide Probes/genetics , Populus/microbiology , Quarantine , RNA, Fungal/genetics , RNA, Ribosomal, 28S/genetics , Reproducibility of Results , Sensitivity and Specificity
4.
Mol Phylogenet Evol ; 66(3): 628-44, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23147268

ABSTRACT

Fungal species belonging to the genus Melampsora (Basidiomycota, Pucciniales) comprise rust pathogens that alternate between Salicaceae and other plant hosts. Species delineation and identification are difficult within this group due to the paucity of observable morphological features. Several Melampsora rusts are highly host-specific and this feature has been used for identification at the species level. However, this criterion is not always reliable since different Melampsora rust species can overlap on one host but specialize on a different one. To date, two different species recognition methods are used to recognize and define species within the Melampsora genus: (i) morphological species recognition, which is based solely on morphological criteria; and (ii) ecological species recognition, which combines morphological criteria with host range to recognize and define species. In order to clarify species recognition within the Melampsora genus, we applied phylogenetic species recognition to Melampsora poplar rusts by conducting molecular phylogenetic analyses on 15 Melampsora taxa using six nuclear and mitochondrial loci. By assessing the genealogical concordance between phylogenies, we identified 12 lineages that evolved independently, corresponding to distinct phylogenetic species. All 12 lineages were concordant with host specialization, but only three belonged to strictly defined morphological species. The estimation of the species tree obtained with Bayesian concordance analysis highlighted a potential co-evolutionary history between Melampsora species and their reciprocal aecial host plants. Within the Melampsora speciation process, aecial host may have had a strong effect on ancestral evolution, whereas telial host specificity seems to have evolved more recently. The morphological characters initially used to define species boundaries in the Melampsora genus are not reflective of the evolutionary and genetic relationships among poplar rusts. In order to construct a more meaningful taxonomy, host specificity must be considered an important criterion for delineating and describing species within the genus Melampsora as previously suggested by ecological species recognition.


Subject(s)
Basidiomycota/genetics , Evolution, Molecular , Host-Pathogen Interactions/physiology , Phylogeny , Salicaceae/microbiology , Base Sequence , Bayes Theorem , Classification/methods , DNA Primers/genetics , Likelihood Functions , Models, Genetic , Molecular Sequence Data , Sequence Analysis, DNA , Species Specificity
5.
Mycologia ; 103(6): 1250-66, 2011.
Article in English | MEDLINE | ID: mdl-21659458

ABSTRACT

Chrysomyxa rusts are fungal pathogens widely present in the boreal forest. Taxonomic delimitation and precise species identification are difficult within this genus because several species display similar morphological features. We applied a DNA barcode system based on the ribosomal internal transcribed spacer region (ITS), large subunit (28S) ribosomal RNA gene, mitochondrial cytochrome oxidase 1 (CO1) and mitochondrial NADH dehydrogenase subunit 6 (NAD6) in 86 strains from 16 different Chrysomyxa species, including members of the Chrysomyxa ledi species complex. The nuclear ITS and 28S loci revealed higher resolving power than the mitochondrial genes. Amplification of the full CO1 barcode region failed due to the presence of introns limiting the dataset obtained with this barcode. In most cases the ITS barcodes were in agreement with taxonomic species based on phenotypic characters. Nevertheless we observed genetically distinct (different DNA barcodes) lineages within Chrysomyxa pyrolae and Chrysomyxa rhododendri, providing some evidence for allopatric speciation within these morphologically defined species. This finding, together with the observed pattern of host specificities of the studied rust fungi, suggest that species diversification within the C. ledi species complex might be governed by a set of factors such as specialisation to certain Ericaceae species as telial hosts and to a lesser extent specialization to different spruce species as aecial hosts. Moreover allopatric speciation by geographic disruption of species also seems to take place. When our data were integrated into a broader phylogenetic framework the Chrysomyxa genus unexpectedly was not resolved as a monophyletic group. Indeed the spruce cone rusts C. pyrolae and C. monesis coalesced with the pine needle rusts belonging to the genus Coleosporium, whereas the microcyclic species Chrysomyxa weirii was embedded within a clade comprising the genus Melampsora.


Subject(s)
Basidiomycota/classification , DNA, Fungal/genetics , Electronic Data Processing , Basidiomycota/genetics , DNA, Ribosomal Spacer , Phylogeny
6.
Mycol Res ; 113(Pt 6-7): 713-24, 2009.
Article in English | MEDLINE | ID: mdl-19249365

ABSTRACT

Wide variation and overlap in morphological characters have led to confusion in species identification within the fungal rust genus Melampsora. The Melampsora species with uredinial-telial stages on white poplar and aspens are especially prone to misidentification. This group includes the Melampsora populnea species complex and the highly destructive pine twisting rust, Melampsora pinitorqua, which alternates between hosts in Populus section Populus and Pinus. Our objective was to compare morphologically based identification to genetic material extracted from Melampsora species pathogenic to aspen and white poplar. We compared morphometric traits and DNA barcodes obtained from internal transcribed spacer (ITS), large ribosomal RNA subunit (28S), and mitochondrial cytochrome oxidase 1 (CO1) sequences to delimit within this taxonomically difficult group. Eight different Melampsora species were initially defined based on host specificity and morphometric data. DNA barcodes were then overlaid on these initial species definitions. The DNA barcodes, specifically those defined on ITS and 28S sequences, provided a highly accurate means of identifying and resolving Melampsora taxa. We highlighted species misidentification in specimens from Canadian herbaria related to either Melampsora medusae f. sp. tremuloidae or Melampsora aecidioides. Finally, we evidenced that the north-American species found on Populus alba, M. aecidioides is closely related but distinct from the four species of the M. populnea complex (Melampsora larici-tremulae, Melampsora magnusiana, Melampsora pinitorqua, and Melampsora rostrupii) found in Eurasia.


Subject(s)
Basidiomycota/genetics , Basidiomycota/isolation & purification , DNA, Fungal/genetics , Pinus/microbiology , Plant Diseases/microbiology , Populus/microbiology , Basidiomycota/classification , DNA, Ribosomal Spacer/genetics , Molecular Sequence Data , Phylogeny , RNA, Ribosomal, 28S/genetics , Sequence Analysis, DNA
7.
Mol Ecol Resour ; 9 Suppl s1: 99-113, 2009 May.
Article in English | MEDLINE | ID: mdl-21564970

ABSTRACT

Our study evaluated in silico the potential of 14 mitochondrial genes encoding the subunits of the respiratory chain complexes, including cytochrome c oxidase I (CO1), as Basidiomycota DNA barcode. Fifteen complete and partial mitochondrial genomes were recovered and characterized in this study. Mitochondrial genes showed high values of molecular divergence, indicating a potential for the resolution of lower-level relationships. However, numerous introns occurred in CO1 as well as in six other genes, potentially interfering with polymerase chain reaction amplification. Considering these results and given the minimal length of 600-bp that is optimal for a fungal barcode, the genes encoding for the ATPase subunit 6, the cytochrome oxidase subunit 3 and the NADH dehydrogenase subunit 6 have the most promising characteristics for DNA barcoding among the mitochondrial genes studied. However, biological validation on two fungal data sets indicated that no single mitochondrial gene gave a better taxonomic resolution than the ITS, the region already widely used in fungal taxonomy.

SELECTION OF CITATIONS
SEARCH DETAIL
...