Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 28(24)2023 Dec 13.
Article in English | MEDLINE | ID: mdl-38138548

ABSTRACT

In this paper, novel mixed Tutton salts with the chemical formulas K2Mn0.03Ni0.97(SO4)2(H2O)6 and K2Mn0.18Cu0.82(SO4)2(H2O)6 were synthesized and studied as compounds for thermochemical heat storage potential. The crystallographic structures of single crystals were determined by X-ray diffraction. Additionally, a comprehensive computational study, based on density functional theory (DFT) calculations and Hirshfeld surface analysis, was performed to calculate structural, electronic, and thermodynamic properties of the coordination complexes [MII(H2O)6]2+ (MII = Mn, Ni, and Cu), as well as to investigate intermolecular interactions and voids in the framework. The axial compressions relative to octahedral coordination geometry observed in the crystal structures were correlated and elucidated using DFT investigations regarding Jahn-Teller effects arising from complexes with different spin multiplicities. The spatial distributions of the frontier molecular orbital and spin densities, as well as energy gaps, provided further insights into the stability of these complexes. Thermogravimetry, differential thermal analysis, and differential scanning calorimetry techniques were also applied to identify the thermal stability and physicochemical properties of the mixed crystals. Values of dehydration enthalpy and storage energy density per volume were also estimated. The two mixed sulfate hydrates reported here have low dehydration temperatures and high energy densities. Both have promising thermal properties for residential heat storage systems, superior to the Tutton salts previously reported.

2.
J Mol Model ; 28(11): 341, 2022 Oct 05.
Article in English | MEDLINE | ID: mdl-36197628

ABSTRACT

Tutton salts have been extensively explored in recent decades due to their attractive physical and chemical properties, which make them potential candidates for thermochemical heat storage systems and optical technologies. In this paper, a series of new mixed Tutton salts with the chemical formula (NH4)2Mn1-xZnx(SO4)2(H2O)6 is reported. Crystals are successfully grown by the solvent slow evaporation method and characterized by powder X-ray diffraction (PXRD) with Rietveld refinement. In particular, the crystal structure of the mixed (NH4)2Mn0.5Zn0.5(SO4)2(H2O)6 crystal is solved through PRXD data using the DICVOL06 algorithm for diffraction pattern indexing and the Le Bail method for lattice parameter and spatial group determination. The structure is refined using the Rietveld method implemented in TOPAS® and reported in the Cambridge Structural Database file number 2104098. Moreover, a computational study using Hirshfeld surface and crystal void analyses is conducted to identify and quantify the intermolecular interactions in the crystal structure as well as to determine the amount of free space in the unit cell. Furthermore, 2D-fingerprint plots are generated to evaluate the main intermolecular contacts that stabilize the crystal lattice. Density functional theory is employed to calculate the structural, thermodynamic, and electronic properties of the coordination [Zn(H2O)6]2+ and [Mn(H2O)6]2+ complexes present in the salts. Molecular orbitals, bond lengths, and the Jahn-Teller effect are also discussed. The findings suggest that in Mn-Zn salts several properties dependent on the electronic structure can be tuned up by modifying the chemical composition.

SELECTION OF CITATIONS
SEARCH DETAIL
...