Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-32071061

ABSTRACT

Etravirine (ETR) is a nonnucleoside reverse transcriptase inhibitor (NNRTI) used in treatment-experienced individuals. Genotypic resistance test-interpretation systems can predict ETR resistance; however, genotype-based algorithms are derived primarily from HIV-1 subtype B and may not accurately predict resistance in non-B subtypes. The frequency of ETR resistance among recombinant subtype C HIV-1 and the accuracy of genotypic interpretation systems were investigated. HIV-1LAI containing full-length RT from HIV-1 subtype C-positive individuals experiencing virologic failure (>10,000 copies/ml and >1 NNRTI resistance-associated mutation) were phenotyped for ETR susceptibility. Fold change (FC) was calculated against a composite 50% effective concentration (EC50) from treatment-naive individuals and three classifications were assigned: (i) <2.9-FC, susceptible; (ii) ≥2.9- to 10-FC, partially resistant; and (iii) >10-FC, fully resistant. The Stanford HIVdb-v8.4 was used for genotype predictions merging the susceptible/potential low-level and low-level/intermediate groups for 3 × 3 comparison. Fifty-four of a hundred samples had reduced ETR susceptibility (≥2.9-FC). The FC correlated with HIVdb-v8.4 (Spearman's rho = 0.62; P < 0.0001); however, 44% of samples were partially (1 resistance classification difference) and 4% completely discordant (2 resistance classification differences). Of the 34 samples with an FC of >10, 26 were HIVdb-v8.4 classified as low-intermediate resistant. Mutations L100I, Y181C, or M230L were present in 27/34 (79%) of samples with an FC of >10 but only in 2/46 (4%) of samples with an FC of <2.9. No other mutations were associated with ETR resistance. Viruses containing the mutation K65R were associated with reduced ETR susceptibility, but 65R reversions did not increase ETR susceptibility. Therefore, genotypic interpretation systems were found to misclassify ETR susceptibility in HIV-1 subtype C samples. Modifications to genotypic algorithms are needed to improve the prediction of ETR resistance for the HIV-1 subtype C.


Subject(s)
Anti-Retroviral Agents/therapeutic use , Drug Resistance, Viral/genetics , HIV Infections/drug therapy , HIV-1/drug effects , HIV-1/genetics , Nitriles/therapeutic use , Pyrimidines/therapeutic use , Reverse Transcriptase Inhibitors/therapeutic use , Algorithms , Genotype , HIV-1/classification , Humans , Microbial Sensitivity Tests , South Africa , Treatment Failure
2.
Antivir Chem Chemother ; 26: 2040206618762985, 2018.
Article in English | MEDLINE | ID: mdl-29566538

ABSTRACT

Background Rilpivirine (TMC278LA) is a promising drug for pre-exposure prophylaxis of HIV-1 because of its sub-nanomolar potency and long-acting formulation; however, increasing transmission of non-nucleoside reverse transcriptase inhibitor-resistant HIV-1 with potential cross-resistance to rilpivirine could reduce its preventive efficacy. This study investigated rilpivirine cross-resistance among recombinant subtype C HIV-1 derived from 100 individuals failing on first-line non-nucleoside reverse transcriptase inhibitor-containing antiretroviral therapy in South Africa whose samples were sent for routine HIV-1 drug resistance testing to Lancet Laboratories (Johannesburg, South Africa). Methods Plasma samples were selected from individuals with HIV-1 RNA > 10,000 copies/ml and ≥1 non-nucleoside reverse transcriptase inhibitor-resistance mutation in reverse transcriptase. Recombinant HIV-1LAI-containing bulk-cloned full-length reverse transcriptase sequences from plasma were assayed for susceptibility to nevirapine (NVP), efavirenz (EFV) and rilpivirine in TZM-bl cells. Fold-change (FC) decreases in drug susceptibility were calculated against a mean IC50 from 12 subtype C HIV-1 samples from treatment-naïve individuals in South Africa. Cross-resistance was evaluated based on biological cutoffs established for rilpivirine (2.5-FC) and the effect of mutation combinations on rilpivirine phenotype. Results Of the 100 samples from individuals on failing antiretroviral therapy, 69 had 2.5- to 75-fold decreased susceptibility to rilpivirine and 11 had >75-fold resistance. Rilpivirine resistance was strongly associated with K103N especially in combination with other rilpivirine-associated mutations. Conclusion The frequently observed cross-resistance of HIV-1 suggests that the preventive efficacy of TMC278LA pre-exposure prophylaxis could be compromised by transmission of HIV-1 from individuals with failure of first-line non-nucleoside reverse transcriptase inhibitor-containing antiretroviral therapy.


Subject(s)
Anti-Retroviral Agents/pharmacology , Drug Resistance, Viral/drug effects , HIV-1/drug effects , Retroviridae Infections/drug therapy , Rilpivirine/pharmacology , Anti-Retroviral Agents/chemistry , Dose-Response Relationship, Drug , Humans , Microbial Sensitivity Tests , Molecular Structure , Rilpivirine/chemistry , South Africa , Structure-Activity Relationship , Treatment Failure
3.
J Virol Methods ; 241: 41-45, 2017 03.
Article in English | MEDLINE | ID: mdl-27993614

ABSTRACT

BACKGROUND: HIV-1 sequence variation is a major obstacle to developing molecular based assays for multiple subtypes. This study sought to independently assess performance characteristics of the ViroSeq™ HIV-1 Integrase RUO Genotyping Kit (Celera, US) for samples of multiple different HIV-1 subtypes. METHODS: 264 samples were tested in the validation, 106 from integrase inhibitor naïve patients' sent for routine HIV-1 drug resistance testing after failing a 1st- or 2nd-line regimen, and 158 samples from an external virology quality assurance program (VQA). For the latter, 53 unique VQA samples were tested in two to five different laboratories to assess assay reproducibility. For all assays, viral RNA was extracted using the ViroSeq extraction module, reverse transcribed, and amplified in a one-step reaction. Four sequencing primers were used to span codons 1-288 of integrase. The Rega subtyping tool was used for subtype assignment. Integrase polymorphisms and mutations were determined as differences from the HXB2 sequence and by the Stanford database, respectively. Sequences obtained from the different laboratories were aligned and sequence homology determined. RESULTS: HIV-1 RNA in the 264 samples ranged from 3.15 to 6.74logcopies/ml. Successful amplification was obtained for 97% of samples (n=256). The 8 samples that failed to amplify were subtype D (n=3), subtype C (n=1), CRF01_AE (n=1), subtype A1 (n=2), and an unassigned subtype (n=1). Of the 256 that successfully amplified samples, 203 (79%) were successfully sequenced with bidirectional coverage. Of the 53 unsuccessful samples, 13 (5%) failed sequencing and 40 (16%) did not have full bidirectional sequence, as a result of failure of sequencing primers: Primer A (n=1); Primer B (n=18); Primer C (n=1); Primer D (n=7) or short sequences (n=16). For the 135 VQA samples (30 unique samples) that were assayed by different laboratories, homology of the sequences obtained ranged from 92.1% to 100%. However, Laboratory 2 detected more mixtures (74%) compared to the other four laboratories, whereas Laboratory 1 detected the least number of mixtures (35%), likely due to differences between the labs in the methods of sequence analysis. Mutations associated with integrase resistance were observed in seven of the 106 (7%) clinical samples [one sample: Q148K; E138K; G140A; two samples: T97A and four samples: L74I]. Of the four samples with L74I, 3 were subtype G. CONCLUSION: Of the total 264 samples tested, 243 (92%) of samples were able to be amplified and sequenced to generate an integrase genotype. Sequencing results were similar between the testing laboratories with the exception of mixture detection. Mutations associated with integrase inhibitor resistance were observed in only 7% of integrase inhibitor naive samples, and some of these mutations are likely to be due to subtype-specific polymorphisms rather than selection by an integrase inhibitor.


Subject(s)
Genotyping Techniques , HIV Integrase/genetics , HIV-1/genetics , RNA, Viral/genetics , DNA Primers , Drug Resistance, Viral/genetics , Genetic Variation , Genotype , HIV Infections/virology , HIV Integrase/classification , HIV Integrase Inhibitors/pharmacology , HIV-1/drug effects , HIV-1/enzymology , Humans , Mutation , Reproducibility of Results
4.
Article in English | MEDLINE | ID: mdl-27895013

ABSTRACT

A vaginal ring containing dapivirine (DPV) has shown moderate protective efficacy against HIV-1 acquisition, but the activity of DPV against efavirenz (EFV)- and nevirapine (NVP)-resistant viruses that could be transmitted is not well defined. We investigated DPV cross-resistance of subtype C HIV-1 from individuals on failing NVP- or EFV-containing antiretroviral therapy (ART) in South Africa. Plasma samples were obtained from individuals with >10,000 copies of HIV RNA/ml and with HIV-1 containing at least one non-nucleoside reverse transcriptase (NNRTI) mutation. Susceptibility to NVP, EFV, and DPV in TZM-bl cells was determined for recombinant HIV-1LAI containing bulk-amplified, plasma-derived, full-length reverse transcriptase sequences. Fold change (FC) values were calculated compared with a composite 50% inhibitory concentration (IC50) from 12 recombinant subtype C HIV-1LAI plasma-derived viruses from treatment-naive individuals in South Africa. A total of 25/100 (25%) samples showed >500-FCs to DPV compared to treatment-naive samples with IC50s exceeding the maximum DPV concentration tested (132 ng/ml). A total of 66/100 (66%) samples displayed 3- to 306-FCs, with a median IC50 of 17.6 ng/ml. Only 9/100 (9%) samples were susceptible to DPV (FC < 3). Mutations L100I and K103N were significantly more frequent in samples with >500-fold resistance to DPV compared to samples with a ≤500-fold resistance. A total of 91% of samples with NNRTI-resistant HIV-1 from individuals on failing first-line ART in South Africa exhibited ≥3-fold cross-resistance to DPV. This level of resistance exceeds expected plasma concentrations, but very high genital tract DPV concentrations from DPV ring use could block viral replication. It is critically important to assess the frequency of transmitted and selected DPV resistance in individuals using the DPV ring.


Subject(s)
Anti-HIV Agents/pharmacology , Drug Resistance, Multiple, Viral/drug effects , HIV Infections/drug therapy , HIV-1/drug effects , HIV-1/genetics , Pyrimidines/pharmacology , Drug Resistance, Multiple, Viral/genetics , Female , HIV Infections/virology , HIV Reverse Transcriptase/genetics , HIV-1/pathogenicity , Humans , Inhibitory Concentration 50 , Mutation , Pyrimidines/blood , South Africa , Treatment Failure , Vagina/virology
5.
J Clin Virol ; 54(1): 30-5, 2012 May.
Article in English | MEDLINE | ID: mdl-22425336

ABSTRACT

BACKGROUND: Access to antiretroviral treatment in resource-limited-settings is inevitably paralleled by the emergence of HIV drug resistance. Monitoring treatment efficacy and HIV drugs resistance testing are therefore of increasing importance in resource-limited settings. Yet low-cost technologies and procedures suited to the particular context and constraints of such settings are still lacking. The ART-A (Affordable Resistance Testing for Africa) consortium brought together public and private partners to address this issue. OBJECTIVES: To develop an automated sequence analysis and editing software to support high throughput automated sequencing. STUDY DESIGN: The ART-A Software was designed to automatically process and edit ABI chromatograms or FASTA files from HIV-1 isolates. RESULTS: The ART-A Software performs the basecalling, assigns quality values, aligns query sequences against a set reference, infers a consensus sequence, identifies the HIV type and subtype, translates the nucleotide sequence to amino acids and reports insertions/deletions, premature stop codons, ambiguities and mixed calls. The results can be automatically exported to Excel to identify mutations. Automated analysis was compared to manual analysis using a panel of 1624 PR-RT sequences generated in 3 different laboratories. Discrepancies between manual and automated sequence analysis were 0.69% at the nucleotide level and 0.57% at the amino acid level (668,047 AA analyzed), and discordances at major resistance mutations were recorded in 62 cases (4.83% of differences, 0.04% of all AA) for PR and 171 (6.18% of differences, 0.03% of all AA) cases for RT. CONCLUSIONS: The ART-A Software is a time-sparing tool for pre-analyzing HIV and viral quasispecies sequences in high throughput laboratories and highlighting positions requiring attention.


Subject(s)
HIV Infections/virology , HIV/drug effects , HIV/genetics , High-Throughput Nucleotide Sequencing/methods , Microbial Sensitivity Tests/methods , Software , Automation/methods , Drug Resistance, Viral , HIV/isolation & purification , Humans , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...