Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Language
Publication year range
1.
J. physiol. biochem ; 78(1): 283-294, feb. 2022.
Article in English | IBECS | ID: ibc-215889

ABSTRACT

Typically, healthy cardiac tissue utilizes more fat than any other organ. Cardiac hypertrophy induces a metabolic shift leading to a preferential consumption of glucose over fatty acids to support the high energetic demand. Calorie restriction is a dietary procedure that induces health benefits and lifespan extension in many organisms. Given the beneficial effects of calorie restriction, we hypothesized that calorie restriction prevents cardiac hypertrophy, lipid content changes, mitochondrial and redox dysregulation. Strikingly, calorie restriction reversed isoproterenol-induced cardiac hypertrophy. Isolated mitochondria from hypertrophic hearts produced significantly higher levels of succinate-driven H2O2 production, which was blocked by calorie restriction. Cardiac hypertrophy lowered mitochondrial respiratory control ratios, and decreased superoxide dismutase and glutathione peroxidase levels. These effects were also prevented by calorie restriction. We performed lipidomic profiling to gain insights into how calorie restriction could interfere with the metabolic changes induced by cardiac hypertrophy. Calorie restriction protected against the consumption of several triglycerides (TGs) linked to unsaturated fatty acids. Also, this dietary procedure protected against the accumulation of TGs containing saturated fatty acids observed in hypertrophic samples. Cardiac hypertrophy induced an increase in ceramides, phosphoethanolamines, and acylcarnitines (12:0, 14:0, 16:0, and 18:0). These were all reversed by calorie restriction. Altogether, our data demonstrate that hypertrophy changes the cardiac lipidome, causes mitochondrial disturbances, and oxidative stress. These changes are prevented (at least partially) by calorie restriction intervention in vivo. This study uncovers the potential for calorie restriction to become a new therapeutic intervention against cardiac hypertrophy, and mechanisms in which it acts. (AU)


Subject(s)
Humans , Caloric Restriction , Metabolomics , Cardiomegaly , Hydrogen Peroxide , Isoproterenol , Mitochondria , Oxidative Stress
2.
J Physiol Biochem ; 78(1): 283-294, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35023023

ABSTRACT

Typically, healthy cardiac tissue utilizes more fat than any other organ. Cardiac hypertrophy induces a metabolic shift leading to a preferential consumption of glucose over fatty acids to support the high energetic demand. Calorie restriction is a dietary procedure that induces health benefits and lifespan extension in many organisms. Given the beneficial effects of calorie restriction, we hypothesized that calorie restriction prevents cardiac hypertrophy, lipid content changes, mitochondrial and redox dysregulation. Strikingly, calorie restriction reversed isoproterenol-induced cardiac hypertrophy. Isolated mitochondria from hypertrophic hearts produced significantly higher levels of succinate-driven H2O2 production, which was blocked by calorie restriction. Cardiac hypertrophy lowered mitochondrial respiratory control ratios, and decreased superoxide dismutase and glutathione peroxidase levels. These effects were also prevented by calorie restriction. We performed lipidomic profiling to gain insights into how calorie restriction could interfere with the metabolic changes induced by cardiac hypertrophy. Calorie restriction protected against the consumption of several triglycerides (TGs) linked to unsaturated fatty acids. Also, this dietary procedure protected against the accumulation of TGs containing saturated fatty acids observed in hypertrophic samples. Cardiac hypertrophy induced an increase in ceramides, phosphoethanolamines, and acylcarnitines (12:0, 14:0, 16:0, and 18:0). These were all reversed by calorie restriction. Altogether, our data demonstrate that hypertrophy changes the cardiac lipidome, causes mitochondrial disturbances, and oxidative stress. These changes are prevented (at least partially) by calorie restriction intervention in vivo. This study uncovers the potential for calorie restriction to become a new therapeutic intervention against cardiac hypertrophy, and mechanisms in which it acts.


Subject(s)
Caloric Restriction , Lipidomics , Cardiomegaly/chemically induced , Cardiomegaly/drug therapy , Cardiomegaly/prevention & control , Humans , Hydrogen Peroxide/metabolism , Isoproterenol/metabolism , Isoproterenol/toxicity , Mitochondria/metabolism , Oxidation-Reduction , Oxidative Stress
3.
Naunyn Schmiedebergs Arch Pharmacol ; 394(2): 217-226, 2021 02.
Article in English | MEDLINE | ID: mdl-32930861

ABSTRACT

Oxidative stress, characterized by the accumulation of reactive oxygen species (ROS), is implicated in the pathogenesis of several diseases, including cardiac hypertrophy. The flavonoid quercetin is a potent ROS scavenger, with several beneficial effects for the cardiovascular system, including antihypertrophic effects. Oxidative imbalance has been implicated in cardiac hypertrophy and heart failure. In this work, we tested whether quercetin could attenuate cardiac hypertrophy by improving redox balance and mitochondrial homeostasis. To test this hypothesis, we treated a group of mice with isoproterenol (30 mg/kg/day) for 4 or 8 consecutive days. Another group received quercetin (10 mg/kg/day) from day 5th of isoproterenol treatment. We carried out the following assays in cardiac tissue: measurement of cardiac hypertrophy, protein sulfhydryl, catalase, Cu/Zn and Mn-superoxide dismutase (SOD) activity, detection of H2O2, and opening of the mitochondrial permeability transition pore. The animals treated with isoproterenol for the initial 4 days showed increased cardiac weight/tibia length ratio, decreased protein sulfhydryl content, compromised SOD and catalase activity, and high H2O2 levels. Quercetin was able to attenuate cardiac hypertrophy, restore protein sulfhydryl, and antioxidant activity, in addition to efficiently blocking the H2O2. We also observed that isoproterenol decreases mitochondrial SOD activity, while quercetin reverses it. Strikingly, quercetin also protects mitochondria against the opening of mitochondrial permeability transition pore. Taken together, these results suggest that quercetin is capable of reversing established isoproterenol-induced cardiac hypertrophy through the restoration of cellular redox balance and protecting mitochondria.


Subject(s)
Antioxidants/therapeutic use , Cardiomegaly/drug therapy , Quercetin/therapeutic use , Animals , Antioxidants/pharmacology , Cardiomegaly/chemically induced , Cardiomegaly/metabolism , Catalase/metabolism , Hydrogen Peroxide/metabolism , Isoproterenol , Male , Mice , Mitochondria/drug effects , Mitochondria/metabolism , Myocardium/metabolism , Quercetin/pharmacology , Superoxide Dismutase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...