Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters











Database
Language
Publication year range
1.
J Appl Microbiol ; 126(5): 1402-1413, 2019 May.
Article in English | MEDLINE | ID: mdl-30659746

ABSTRACT

AIM: To screen and identify a potential biosurfactant-producing yeast strain isolated from Antarctic soil and to evaluate the fermentation process kinetics of the most promising strain on biosurfactant production using glycerol as carbon source. METHODS AND RESULTS: From the 68 isolated yeast strains, 11 strains were able to produce biosurfactants after Emulsification Index (E.I.) and Drop Collapse tests, reaching an E.I. higher than 10%. Strain 1_4.0 was the best producer, identified as Candida glaebosa based on molecular analysis. Yeast was cultivated in a medium composed of glycerol supplemented with yeast extract for 120 h to determine the process kinetics. The increased C/N ratio affected yeast growth and biosurfactant production. Biosurfactant release was associated with the end of exponential and beginning of the stationary growth phases. Results indicated an E.I. of 30% at the end of the fermentation. CONCLUSIONS: The feasiability of C. glaebosa to produce biosurfactant from a low-cost medium cultivation shows a great impact on the development of bioresource in the Antarctica terrestrial environment. SIGNIFICANCE AND IMPACT OF THE STUDY: Although the diversity of psychrophilic/psychrotolerant micro-organisms from Antarctica has been the preferred subject of study by microbiologists, terrestrial microfungal communities are scarcely investigated and literature about the biotechnological potential of such micro-organisms should cover important biomolecules in addition to cold-adapted enzymes. In the present study, for the first time, the Maritime Antarctica environment was screened as a novel source of biosurfactants produced by micro-organisms.


Subject(s)
Candida/metabolism , Soil Microbiology , Surface-Active Agents/metabolism , Antarctic Regions , Candida/isolation & purification , Glycerol/metabolism , Islands , Kinetics , Surface-Active Agents/isolation & purification , Yeasts/growth & development , Yeasts/isolation & purification , Yeasts/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL