Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
J Orthop Res ; 31(12): 1971-9, 2013 Dec.
Article in English | MEDLINE | ID: mdl-23939983

ABSTRACT

Fracture healing is a complex process influenced by a multitude of factors and expression of several thousand genes. Polymorphisms in these genes can lead to an extended healing process and explain why certain patients are more susceptible to develop non-union. A total of 16 SNPs within five genes involved in bone repair pathogenesis (FAM5C, BMP4, FGF3, FGF10, and FGFR1) were investigated in 167 patients with long bone fractures, 101 with uneventful healing, and 66 presenting aseptic non-unions. Exclusion criteria were patients presenting pathological fractures, osteoporosis, hypertrophic and infected non-unions, pregnancy, and children. All genetic markers were genotyped using TaqMan real-time PCR. Chi-square test was used to compare genotypes, allele frequencies, and haplotype differences between groups. Binary logistic regression analyzed the significance of many covariates and the incidence of non-union. Statistical analysis revealed open fracture to be a risk factor for non-union development (p < 0.001, OR 3.6 [1.70-7.67]). A significant association of haplotype GTAA in BMP4 (p = 0.01) and FGFR1 rs13317 (p = 0.005) with NU could be observed. Also, uneventful healing showed association with FAM5C rs1342913 (p = 0.04). Our work supported the role of BMP4 and FGFR1 in NU fracture independently of the presence of previously described risk factors.


Subject(s)
Bone Morphogenetic Protein 4/genetics , Fractures, Ununited/genetics , Polymorphism, Single Nucleotide , Receptor, Fibroblast Growth Factor, Type 1/genetics , Adult , Aged , Female , Fracture Healing , Haplotypes , Humans , Male , Middle Aged
2.
Biomed Res Int ; 2013: 790842, 2013.
Article in English | MEDLINE | ID: mdl-23710460

ABSTRACT

Bone marrow stromal cells (BMSCs) are a valuable resource for skeletal regenerative medicine because of their osteogenic potential. In spite of the very general term "stem cell," this population of cells is far from homogeneous, and different BMSCs clones have greatly different phenotypic properties and, therefore, potentially different therapeutic potential. Adherence to a culture flask surface is a primary defining characteristic of BMSCs. We hypothesized that based on the adherence time we could obtain an enriched population of cells with a greater therapeutic potential. We characterized two populations of bone marrow-derived cells, those that adhered by three days (R-cells) and those that did not adhere by three days but did by six days (L-cells). Clones derived from L-cells could be induced into adipogenic, chondrogenic, and osteogenic differentiation in vitro. L-cells appeared to have greater proliferative capacity, as manifested by larger colony diameter and clones with higher CD146 expression. Only clones from L-cells developed bone marrow stroma in vivo. We conclude that the use of late adherence of BMSCs is one parameter that can be used to enrich for cells that will constitute a superior final product for cell therapy in orthopedics.


Subject(s)
Cell Adhesion/genetics , Cell Differentiation , Mesenchymal Stem Cells/cytology , Osteogenesis , Stem Cell Niche , Adult , CD146 Antigen/biosynthesis , Cell Lineage/genetics , Cells, Cultured , Female , Fibroblasts/cytology , Gene Expression Regulation , Humans , Male , Middle Aged , Regenerative Medicine
SELECTION OF CITATIONS
SEARCH DETAIL
...