Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters











Database
Language
Publication year range
1.
Br J Pharmacol ; 156(7): 1054-66, 2009 Apr.
Article in English | MEDLINE | ID: mdl-19298255

ABSTRACT

BACKGROUND AND PURPOSE: Artemisinin is an antimalarial drug exerting pleiotropic effects, such as the inhibition of the transcription factor nuclear factor-kappa B and of the sarcoplasmic/endoplasmic reticulum Ca(++)-ATPase (SERCA) of P. falciparum. As the sesquiterpene lactone thapsigargin, a known inhibitor of mammalian SERCA, enhances the expression of P-glycoprotein (Pgp) by increasing the intracellular Ca(++) ([Ca(++)](i)) level, we investigated whether artemisinin and its structural homologue parthenolide could inhibit SERCA in human colon carcinoma HT29 cells and induce a resistance to doxorubicin. EXPERIMENTAL APPROACH: HT29 cells were incubated with artemisinin or parthenolide and assessed for SERCA activity, [Ca(++)](i) levels, Pgp expression, doxorubicin accumulation and toxicity, and translocation of the hypoxia-inducible factor, HIF-1alpha. KEY RESULTS: Artemisinin and parthenolide, like the specific SERCA inhibitors thapsigargin and cyclopiazonic acid, reduced the activity of SERCA. They also increased intracellular calcium concentration ([Ca(++)](i)) and Pgp expression and decreased doxorubicin accumulation and cytotoxicity. The intracellular Ca(++) chelator, 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid, and the inhibitor of calmodulin-dependent kinase II (CaMKII) KN93 prevented these effects. CaMKII is known to promote the phosphorylation and the activation of HIF-1alpha, which may induce Pgp. In HT29 cells, artemisinin and parthenolide induced the phosphorylation of HIF-1alpha, which was inhibited by KN93. CONCLUSIONS AND IMPLICATIONS: Our results suggest that artemisinin and parthenolide may act as SERCA inhibitors and, like other SERCA inhibitors, induce resistance to doxorubicin in human colon cancer cells, via the CaMKII-dependent activation of HIF-1alpha and the induction of Pgp.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B, Member 1/biosynthesis , Antimalarials/adverse effects , Antimetabolites, Antineoplastic/pharmacology , Artemisinins/adverse effects , Calcium/physiology , Doxorubicin/pharmacology , Drug Resistance, Neoplasm , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Calcium-Calmodulin-Dependent Protein Kinase Type 2/antagonists & inhibitors , Cell Line, Tumor , Colonic Neoplasms , Humans , Phosphorylation , Protein Transport , Sarcoplasmic Reticulum Calcium-Transporting ATPases/antagonists & inhibitors , Sesquiterpenes/adverse effects
SELECTION OF CITATIONS
SEARCH DETAIL