Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Annu Rev Pathol ; 19: 227-259, 2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38265879

ABSTRACT

Infections, cardiovascular disease, and cancer are major causes of disease and death worldwide. Neutrophils are inescapably associated with each of these health concerns, by either protecting from, instigating, or aggravating their impact on the host. However, each of these disorders has a very different etiology, and understanding how neutrophils contribute to each of them requires understanding the intricacies of this immune cell type, including their immune and nonimmune contributions to physiology and pathology. Here, we review some of these intricacies, from basic concepts in neutrophil biology, such as their production and acquisition of functional diversity, to the variety of mechanisms by which they contribute to preventing or aggravating infections, cardiovascular events, and cancer. We also review poorly explored aspects of how neutrophils promote health by favoring tissue repair and discuss how discoveries about their basic biology inform the development of new therapeutic strategies.


Subject(s)
Cardiovascular Diseases , Cardiovascular Infections , Neoplasms , Humans , Neutrophils , Health Promotion
2.
Methods Mol Biol ; 2482: 265-284, 2022.
Article in English | MEDLINE | ID: mdl-35610433

ABSTRACT

Neutrophils infiltrate most tissues in the organism in the steady state, often following circadian patterns. Neutrophil infiltration is also key to immune defense under inflammatory conditions. In all cases, accurate measurements of the absolute number of infiltrated cells and of their localization are important to understand steady-state or inflammatory migration patterns and kinetics. Here we present a method to obtain accurate information on both neutrophil number and distribution that can be successfully applied to circadian studies of neutrophil (or any other cell of interest) migration in vivo. Moreover, this method can be also used to obtain information on activation states or effector functions, for example, by measurement of neutrophil extracellular trap formation in tissues.


Subject(s)
Extracellular Traps , Flow Cytometry , Neutrophil Infiltration , Neutrophils
3.
Science ; 374(6575): 1559-1560, 2021 Dec 24.
Article in English | MEDLINE | ID: mdl-34941413

ABSTRACT

Fibrin deposits in the oral mucosa trigger neutrophil activation and bone destruction.


Subject(s)
Fibrin , Mouth Mucosa , Humans , Inflammation
4.
Cell ; 183(5): 1282-1297.e18, 2020 11 25.
Article in English | MEDLINE | ID: mdl-33098771

ABSTRACT

Classically considered short-lived and purely defensive leukocytes, neutrophils are unique in their fast and moldable response to stimulation. This plastic behavior may underlie variable and even antagonistic functions during inflammation or cancer, yet the full spectrum of neutrophil properties as they enter healthy tissues remains unexplored. Using a new model to track neutrophil fates, we found short but variable lifetimes across multiple tissues. Through analysis of the receptor, transcriptional, and chromatin accessibility landscapes, we identify varying neutrophil states and assign non-canonical functions, including vascular repair and hematopoietic homeostasis. Accordingly, depletion of neutrophils compromised angiogenesis during early age, genotoxic injury, and viral infection, and impaired hematopoietic recovery after irradiation. Neutrophils acquired these properties in target tissues, a process that, in the lungs, occurred in CXCL12-rich areas and relied on CXCR4. Our results reveal that tissues co-opt neutrophils en route for elimination to induce programs that support their physiological demands.


Subject(s)
Cell Lineage , Neutrophils/metabolism , Organ Specificity , Animals , Chromatin/metabolism , Female , Hematopoiesis , Intestines/blood supply , Lung/blood supply , Male , Mice, Inbred C57BL , Neovascularization, Physiologic , Nuclear Receptor Subfamily 4, Group A, Member 1/metabolism , Receptors, CXCR4/metabolism , Single-Cell Analysis , Transcription, Genetic , Transcriptome/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...