Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 61
Filter
1.
Scand J Public Health ; : 14034948241233359, 2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38439134

ABSTRACT

BACKGROUND: The association between ambient air temperature and mortality has not been assessed in Norway. This study aimed to quantify for seven Norwegian cities (Oslo, Bergen, Stavanger, Drammen, Fredrikstad, Trondheim and Tromsø) the non-accidental, cardiovascular and respiratory diseases mortality burden due to non-optimal ambient temperatures. METHODS: We used a historical daily dataset (1996-2018) to perform city-specific analyses with a distributed lag non-linear model with 14 days of lag, and pooled results in a multivariate meta-regression. We calculated attributable deaths for heat and cold, defined as days with temperatures above and below the city-specific optimum temperature. We further divided temperatures into moderate and extreme using cut-offs at the 1st and 99th percentiles. RESULTS: We observed that 5.3% (95% confidence interval (CI) 2.0-8.3) of the non-accidental related deaths, 11.8% (95% CI 6.4-16.4) of the cardiovascular and 5.9% (95% CI -4.0 to 14.3) of the respiratory were attributable to non-optimal temperatures. Notable variations were found between cities and subgroups stratified by sex and age. The mortality burden related to cold dominated in all three health outcomes (5.1%, 2.0-8.1, 11.4%, 6.0-15.4, and 5.1%, -5.5 to 13.8 respectively). Heat had a more pronounced effect on the burden of respiratory deaths (0.9%, 0.2-1.0). Extreme cold accounted for 0.2% of non-accidental deaths and 0.3% of cardiovascular and respiratory deaths, while extreme heat contributed to 0.2% of non-accidental and to 0.3% of respiratory deaths. CONCLUSIONS: Most of the burden could be attributed to the contribution of moderate cold. This evidence has significant implications for enhancing public-health policies to better address health consequences in the Norwegian setting.

2.
One Earth ; 7(2): 325-335, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38420618

ABSTRACT

Short-term exposure to ground-level ozone in cities is associated with increased mortality and is expected to worsen with climate and emission changes. However, no study has yet comprehensively assessed future ozone-related acute mortality across diverse geographic areas, various climate scenarios, and using CMIP6 multi-model ensembles, limiting our knowledge on future changes in global ozone-related acute mortality and our ability to design targeted health policies. Here, we combine CMIP6 simulations and epidemiological data from 406 cities in 20 countries or regions. We find that ozone-related deaths in 406 cities will increase by 45 to 6,200 deaths/year between 2010 and 2014 and between 2050 and 2054, with attributable fractions increasing in all climate scenarios (from 0.17% to 0.22% total deaths), except the single scenario consistent with the Paris Climate Agreement (declines from 0.17% to 0.15% total deaths). These findings stress the need for more stringent air quality regulations, as current standards in many countries are inadequate.

3.
Nat Commun ; 15(1): 1796, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38413648

ABSTRACT

Older adults are generally amongst the most vulnerable to heat and cold. While temperature-related health impacts are projected to increase with global warming, the influence of population aging on these trends remains unclear. Here we show that at 1.5 °C, 2 °C, and 3 °C of global warming, heat-related mortality in 800 locations across 50 countries/areas will increase by 0.5%, 1.0%, and 2.5%, respectively; among which 1 in 5 to 1 in 4 heat-related deaths can be attributed to population aging. Despite a projected decrease in cold-related mortality due to progressive warming alone, population aging will mostly counteract this trend, leading to a net increase in cold-related mortality by 0.1%-0.4% at 1.5-3 °C global warming. Our findings indicate that population aging constitutes a crucial driver for future heat- and cold-related deaths, with increasing mortality burden for both heat and cold due to the aging population.


Subject(s)
Climate Change , Global Warming , Temperature , Cold Temperature , Hot Temperature , Mortality
4.
Environ Health Perspect ; 131(12): 127008, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38060264

ABSTRACT

BACKGROUND: The impact of temperature on morbidity remains largely unknown. Moreover, extensive evidence indicates contrasting patterns between temperature-mortality and temperature-morbidity associations. A nationwide comparison of the impact of temperature on mortality and morbidity in more specific subgroups is necessary to strengthen understanding and help explore underlying mechanisms by identifying susceptible populations. OBJECTIVE: We performed this study to quantify and compare the impact of temperature on mortality and morbidity in 47 prefectures in Japan. METHODS: We applied a two-stage time-series design with distributed lag nonlinear models and mixed-effect multivariate meta-analysis to assess the association of temperature with mortality and morbidity by causes (all-cause, circulatory, and respiratory) at prefecture and country levels between 2015 and 2019. Subgroup analysis was conducted by sex, age, and regions. RESULTS: The patterns and magnitudes of temperature impacts on morbidity and mortality differed. For all-cause outcomes, cold exhibited larger effects on mortality, and heat showed larger effects on morbidity. At specific temperature percentiles, cold (first percentile) was associated with a higher relative risk (RR) of mortality [1.45; 95% confidence interval (CI): 1.39, 1.52] than morbidity (1.33; 95% CI: 1.26, 1.40), as compared to the minimum mortality/morbidity temperature. Heat (99th percentile) was associated with a higher risk of morbidity (1.30; 95% CI: 1.28, 1.33) than mortality (1.04; 95% CI: 1.02, 1.06). For cause-specific diseases, mortality due to circulatory diseases was more susceptible to heat and cold than morbidity. However, for respiratory diseases, both cold and heat showed higher risks for morbidity than mortality. Subgroup analyses suggested varied associations depending on specific outcomes. DISCUSSION: Distinct patterns were observed for the association of temperature with mortality and morbidity, underlying different mechanisms of temperature on different end points, and the differences in population susceptibility are possible explanations. Future mitigation policies and preventive measures against nonoptimal temperatures should be specific to disease outcomes and targeted at susceptible populations. https://doi.org/10.1289/EHP12854.


Subject(s)
Cold Temperature , Hot Temperature , Japan/epidemiology , Morbidity , Mortality , Temperature
5.
Int J Climatol ; 2023 Jul 12.
Article in English | MEDLINE | ID: mdl-37874919

ABSTRACT

Combined heat and humidity is frequently described as the main driver of human heat-related mortality, more so than dry-bulb temperature alone. While based on physiological thinking, this assumption has not been robustly supported by epidemiological evidence. By performing the first systematic comparison of eight heat stress metrics (i.e., temperature combined with humidity and other climate variables) with warm-season mortality, in 604 locations over 39 countries, we find that the optimal metric for modelling mortality varies from country to country. Temperature metrics with no or little humidity modification associates best with mortality in ~40% of the studied countries. Apparent temperature (combined temperature, humidity and wind speed) dominates in another 40% of countries. There is no obvious climate grouping in these results. We recommend, where possible, that researchers use the optimal metric for each country. However, dry-bulb temperature performs similarly to humidity-based heat stress metrics in estimating heat-related mortality in present-day climate.

7.
Nat Commun ; 14(1): 4894, 2023 08 24.
Article in English | MEDLINE | ID: mdl-37620329

ABSTRACT

Heat-related mortality has been identified as one of the key climate extremes posing a risk to human health. Current research focuses largely on how heat mortality increases with mean global temperature rise, but it is unclear how much climate change will increase the frequency and severity of extreme summer seasons with high impact on human health. In this probabilistic analysis, we combined empirical heat-mortality relationships for 748 locations from 47 countries with climate model large ensemble data to identify probable past and future highly impactful summer seasons. Across most locations, heat mortality counts of a 1-in-100 year season in the climate of 2000 would be expected once every ten to twenty years in the climate of 2020. These return periods are projected to further shorten under warming levels of 1.5 °C and 2 °C, where heat-mortality extremes of the past climate will eventually become commonplace if no adaptation occurs. Our findings highlight the urgent need for strong mitigation and adaptation to reduce impacts on human lives.


Subject(s)
Biodiversity , Hot Temperature , Humans , Temperature , Acclimatization , Climate Change
8.
Environ Health Perspect ; 131(5): 57005, 2023 05.
Article in English | MEDLINE | ID: mdl-37172196

ABSTRACT

BACKGROUND: The health effects of heat are well documented; however, limited information is available regarding the health risks of hot nights. Hot nights have become more common, increasing at a faster rate than hot days, making it urgent to understand the characteristics of the hot night risk. OBJECTIVES: We estimated the effects of hot nights on the cause- and location-specific mortality in a nationwide assessment over 43 y (1973-2015) using a unified analytical framework in the 47 prefectures of Japan. METHODS: Hot nights were defined as days with a) minimum temperature ≥25°C (HN25) and b) minimum temperature ≥95th percentile (HN95th) for the prefecture. We conducted a time-series analysis using a two-stage approach during the hot night occurrence season (April-November). For each prefecture, we estimated associations between hot nights and mortality controlling for potential confounders including daily mean temperature. We then used a random-effects meta-analytic model to estimate the pooled cumulative association. RESULTS: Overall, 24,721,226 deaths were included in this study. Nationally, all-cause mortality increased by 9%-10% [HN25 relative risk (RR)=1.09, 95% confidence interval (CI): 1.08, 1.10; HN95th RR=1.10, 95% CI: 1.09, 1.11] during hot nights in comparison with nonhot nights. All 11 cause-specific mortalities were strongly associated with hot nights, and the corresponding associations appeared to be acute and lasted a few weeks, depending on the cause of death. The strength of the association between hot nights and mortality varied among prefectures. We found a higher mortality risk from hot nights in early summer in comparison with the late summer in all regions. CONCLUSIONS: Our findings support the evidence of mortality impacts from hot nights in excess of that explicable by daily mean temperature and have implications useful for establishing public health policy and research efforts estimating the health effects of climate change. https://doi.org/10.1289/EHP11444.


Subject(s)
Hot Temperature , Mortality , Retrospective Studies , Japan/epidemiology , Temperature , Seasons
9.
Environ Res Health ; 1(2): 025003-25003, 2023 Jun 01.
Article in English | MEDLINE | ID: mdl-36969952

ABSTRACT

Heat- and cold-related mortality risks are highly variable across different geographies, suggesting a differential distribution of vulnerability factors between and within countries, which could partly be driven by urban-to-rural disparities. Identifying these drivers of risk is crucial to characterize local vulnerability and design tailored public health interventions to improve adaptation of populations to climate change. We aimed to assess how heat- and cold-mortality risks change across urban, peri-urban and rural areas in Switzerland and to identify and compare the factors associated with increased vulnerability within and between different area typologies. We estimated the heat- and cold-related mortality association using the case time-series design and distributed lag non-linear models over daily mean temperature and all-cause mortality series between 1990-2017 in each municipality in Switzerland. Then, through multivariate meta-regression, we derived pooled heat and cold-mortality associations by typology (i.e. urban/rural/peri-urban) and assessed potential vulnerability factors among a wealth of demographic, socioeconomic, topographic, climatic, land use and other environmental data. Urban clusters reported larger pooled heat-related mortality risk (at 99th percentile, vs. temperature of minimum mortality (MMT)) (relative risk=1.17(95%CI:1.10;1.24, vs peri-urban 1.03(1.00;1.06), and rural 1.03 (0.99;1.08)), but similar cold-mortality risk (at 1st percentile, vs. MMT) (1.35(1.28;1.43), vs rural 1.28(1.14;1.44) and peri-urban 1.39 (1.27-1.53)) clusters. We found different sets of vulnerability factors explaining the differential risk patterns across typologies. In urban clusters, mainly environmental factors (i.e. PM2.5) drove differences in heat-mortality association, while for peri-urban/rural clusters socio-economic variables were also important. For cold, socio-economic variables drove changes in vulnerability across all typologies, while environmental factors and ageing were other important drivers of larger vulnerability in peri-urban/rural clusters, with heterogeneity in the direction of the association. Our findings suggest that urban populations in Switzerland may be more vulnerable to heat, compared to rural locations, and different sets of vulnerability factors may drive these associations in each typology. Thus, future public health adaptation strategies should consider local and more tailored interventions rather than a one-size fits all approach. size fits all approach.

10.
Article in English | MEDLINE | ID: mdl-36981871

ABSTRACT

Defining health-based thresholds for effective heat warnings is crucial for climate change adaptation strategies. Translating the non-linear function between heat and health effects into an effective threshold for heat warnings to protect the population is a challenge. We present a systematic analysis of heat indicators in relation to mortality. We applied distributed lag non-linear models in an individual-level case-crossover design to assess the effects of heat on mortality in Switzerland during the warm season from 2003 to 2016 for three temperature metrics (daily mean, maximum, and minimum temperature), and various threshold temperatures and heatwave definitions. Individual death records with information on residential address from the Swiss National Cohort were linked to high-resolution temperature estimates from 100 m resolution maps. Moderate (90th percentile) to extreme thresholds (99.5th percentile) of the three temperature metrics implied a significant increase in mortality (5 to 38%) in respect of the median warm-season temperature. Effects of the threshold temperatures on mortality were similar across the seven major regions in Switzerland. Heatwave duration did not modify the effect when considering delayed effects up to 7 days. This nationally representative study, accounting for small-scale exposure variability, suggests that the national heat-warning system should focus on heatwave intensity rather than duration. While a different heat-warning indicator may be appropriate in other countries, our evaluation framework is transferable to any country.


Subject(s)
Hot Temperature , Mortality , Humans , Temperature , Cross-Over Studies , Switzerland/epidemiology , Seasons
11.
Environ Res ; 226: 115698, 2023 06 01.
Article in English | MEDLINE | ID: mdl-36931379

ABSTRACT

While climate change and population ageing are expected to increase the exposure and vulnerability to extreme heat events, there is emerging evidence suggesting that social inequalities would additionally magnify the projected health impacts. However, limited evidence exists on how social determinants modify heat-related cardiovascular morbidity. This study aims to explore the association between heat and the incidence of first acute cardiovascular event (CVE) in adults in Madrid between 2015 and 2018, and to assess how social context and other individual characteristics modify the estimated association. We performed a case-crossover study using the individual information collected from electronic medical records of 6514 adults aged 40-75 living in Madrid city that suffered a first CVE during summer (June-September) between 2015 and 2018. We applied conditional logistic regression with a distributed lag non-linear model to analyse the heat-CVE association. Estimates were expressed as Odds Ratio (OR) for extreme heat (at 97.5th percentile of daily maximum temperature distribution), compared to the minimum risk temperature. We performed stratified analyses by specific diagnosis, sex, age (40-64, 65-75), country of origin, area-level deprivation, and presence of comorbidities. Overall, the risk of suffering CVE increased by 15.3% (OR: 1.153 [95%CI 1.010-1.317]) during extreme heat. Males were particularly more affected (1.248, [1.059-1.471]), vs 1.039 [0.810-1.331] in females), and non-Spanish population (1.869 [1.28-2.728]), vs 1.084 [0.940-1.250] in Spanish). Similar estimates were found by age groups. We observed a dose-response pattern across deprivation levels, with larger risks in populations with higher deprivation (1.228 [1.031-1.462]) and almost null association in the lowest deprivation group (1.062 [0.836-1.349]). No clear patterns of larger vulnerability were found by presence of comorbidity. We found that heat unequally increased the risk of suffering CVE in adults in Madrid, affecting mainly males and deprived populations. Local measures should pay special attention to vulnerable populations.


Subject(s)
Cardiovascular Diseases , Hot Temperature , Adult , Male , Female , Humans , Spain/epidemiology , Cross-Over Studies , Incidence , Socioeconomic Factors , Cardiovascular Diseases/epidemiology
12.
Annu Rev Public Health ; 44: 213-232, 2023 04 03.
Article in English | MEDLINE | ID: mdl-36623928

ABSTRACT

Extreme weather events are expected to increase due to climate change, which could pose an additional burden of morbidity and mortality. In recent decades, drought severity has increased in several regions around the world, affecting health by increasing the risk of water-, food-, and vector-borne diseases, malnutrition, cardiovascular and respiratory illness, mental health disorders, and mortality. Drought frequency and severity are expected to worsen across large regions as a result of a decrease in precipitation and an increase in temperature and atmospheric evaporative demand, posing a pressing challenge for public health. Variation in impacts among countries and communities is due to multiple factors, such as aging, socioeconomic status, access to health care, and gender, affecting population resilience. Integrative proactive action plans focused on risk management are required, and resources should be transferred to developing countries to reduce their vulnerability and risk.


Subject(s)
Droughts , Public Health , Humans , Climate Change
14.
Int J Gynaecol Obstet ; 160(2): 430-436, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36165637

ABSTRACT

OBJECTIVE: To evaluate the use of UmbiFlow™ in field settings to assess the impact of heat stress on umbilical artery resistance index (RI). METHODS: This feasibility study was conducted in West Kiang, The Gambia, West Africa; a rural area with increasing exposure to extreme heat. We recruited women with singleton fetuses who performed manual tasks (such as farming) during pregnancy to an observational cohort study. The umbilical artery RI was measured at rest, and during and at the end of a typical working shift in women at 28 weeks or more of pregnancy. Adverse pregnancy outcomes (APO) were classified as stillbirth, preterm birth, low birth weight, or small for gestational age, and all other outcomes as normal. RESULTS: A total of 40 participants were included; 23 normal births and 17 APO. Umbilical artery RI demonstrated a nonlinear relationship to heat stress, with indication of a potential threshold value for placental insufficiency at 32°C by universal thermal climate index and 30°C by wet bulb globe temperature. CONCLUSIONS: The Umbiflow device proved to be an effective field method for assessing placental function. Dynamic changes in RI may begin to explain the association between extreme heat and APO with an identified threshold of effect.


Subject(s)
Placental Circulation , Premature Birth , Pregnancy , Female , Infant, Newborn , Humans , Placenta/blood supply , Feasibility Studies , Umbilical Arteries/diagnostic imaging , Ultrasonography, Prenatal/methods , Heat-Shock Response
15.
Environ Res Lett ; 18: 074037, 2023 Jul 04.
Article in English | MEDLINE | ID: mdl-38476980

ABSTRACT

Human-induced climate change is leading to an increase in the intensity and frequency of extreme weather events, which are severely affecting the health of the population. The exceptional heat during the summer of 2022 in Europe is an example, with record-breaking temperatures only below the infamous 2003 summer. High ambient temperatures are associated with many health outcomes, including premature mortality. However, there is limited quantitative evidence on the contribution of anthropogenic activities to the substantial heat-related mortality observed in recent times. Here we combined methods in climate epidemiology and attribution to quantify the heat-related mortality burden attributed to human-induced climate change in Switzerland during the summer of 2022. We first estimated heat-mortality association in each canton and age/sex population between 1990 and 2017 in a two-stage time-series analysis. We then calculated the mortality attributed to heat in the summer of 2022 using observed mortality, and compared it with the hypothetical heat-related burden that would have occurred in absence of human-induced climate change. This counterfactual scenario was derived by regressing the Swiss average temperature against global mean temperature in both observations and CMIP6 models. We estimate 623 deaths [95% empirical confidence interval (95% eCI): 151-1068] due to heat between June and August 2022, corresponding to 3.5% of all-cause mortality. More importantly, we find that 60% of this burden (370 deaths [95% eCI: 133-644]) could have been avoided in absence of human-induced climate change. Older women were affected the most, as well as populations in western and southern Switzerland and more urbanized areas. Our findings demonstrate that human-induced climate change was a relevant driver of the exceptional excess health burden observed in the 2022 summer in Switzerland.

18.
Sci Rep ; 12(1): 5178, 2022 03 25.
Article in English | MEDLINE | ID: mdl-35338191

ABSTRACT

Epidemiological analyses of health risks associated with non-optimal temperature are traditionally based on ground observations from weather stations that offer limited spatial and temporal coverage. Climate reanalysis represents an alternative option that provide complete spatio-temporal exposure coverage, and yet are to be systematically explored for their suitability in assessing temperature-related health risks at a global scale. Here we provide the first comprehensive analysis over multiple regions to assess the suitability of the most recent generation of reanalysis datasets for health impact assessments and evaluate their comparative performance against traditional station-based data. Our findings show that reanalysis temperature from the last ERA5 products generally compare well to station observations, with similar non-optimal temperature-related risk estimates. However, the analysis offers some indication of lower performance in tropical regions, with a likely underestimation of heat-related excess mortality. Reanalysis data represent a valid alternative source of exposure variables in epidemiological analyses of temperature-related risk.


Subject(s)
Climate , Weather , Hot Temperature , Temperature
20.
Environ Health Perspect ; 130(3): 37001, 2022 03.
Article in English | MEDLINE | ID: mdl-35262415

ABSTRACT

BACKGROUND: Because older adults are particularly vulnerable to nonoptimal temperatures, it is expected that the progressive population aging will amplify the health burden attributable to heat and cold due to climate change in future decades. However, limited evidence exists on the contribution of population aging on historical temperature-mortality trends. OBJECTIVES: We aimed to a) assess trends in heat- and cold-related mortality in Switzerland between 1969 and 2017 and b) to quantify the contribution of population aging to the observed patterns. METHODS: We collected daily time series of all-cause mortality by age group (<65, 65-79, and 80 y and older) and mean temperature for each Swiss municipality (1969-2017). We performed a two-stage time-series analysis with distributed lag nonlinear models and multivariate longitudinal meta-regression to obtain temperature-mortality associations by canton, decade, and age group. We then calculated the corresponding excess mortality attributable to nonoptimal temperatures and compared it to the estimates obtained in a hypothetical scenario of no population aging. RESULTS: Between 1969 and 2017, heat- and cold-related mortality represented 0.28% [95% confidence interval (CI): 0.18, 0.37] and 8.91% (95% CI: 7.46, 10.21) of total mortality, which corresponded to 2.4 and 77 deaths per 100,000 people annually, respectively. Although mortality rates for heat slightly increased over time, annual number of deaths substantially raised up from 74 (12;125) to 181 (39;307) between 1969-78 and 2009-17, mostly driven by the ≥80-y-old age group. Cold-related mortality rates decreased across all ages, but annual cold-related deaths still increased among the ≥80, due to the increase in the population at risk. We estimated that heat- and cold-related deaths would have been 52.7% and 44.6% lower, respectively, in the most recent decade in the absence of population aging. DISCUSSION: Our findings suggest that a substantial proportion of historical temperature-related impacts can be attributed to population aging. We found that population aging has attenuated the decrease in cold-related mortality and amplified heat-related mortality. https://doi.org/10.1289/EHP9835.


Subject(s)
Cold Temperature , Hot Temperature , Aged , Aging , Climate Change , Humans , Mortality , Switzerland/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL
...