Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
J Am Chem Soc ; 145(32): 18094-18103, 2023 Aug 16.
Article in English | MEDLINE | ID: mdl-37540636

ABSTRACT

Chiral oxygenated aliphatic moieties are recurrent in biological and pharmaceutically relevant molecules and constitute one of the most versatile types of functionalities for further elaboration. Herein we report a protocol for straightforward and general access to chiral γ-lactones via enantioselective oxidation of strong nonactivated primary and secondary C(sp3)-H bonds in readily available carboxylic acids. The key enabling aspect is the use of robust sterically encumbered manganese catalysts that provide outstanding enantioselectivities (up to >99.9%) and yields (up to 96%) employing hydrogen peroxide as the oxidant. The resulting γ-lactones are of immediate interest for the preparation of inter alia natural products and recyclable polymeric materials.

2.
Faraday Discuss ; 244(0): 51-61, 2023 Aug 11.
Article in English | MEDLINE | ID: mdl-37185809

ABSTRACT

Site-selective oxidation of aliphatic C-H bonds is a powerful synthetic tool because it enables rapid build-up of product complexity and diversity from simple precursors. Besides the poor reactivity of alkyl C-H bonds, the main challenge in this reaction consists in differentiating between the multiple similar sites present in most organic molecules. Herein, a manganese oxidation catalyst equipped with two 18-benzo-6-crown ether receptors has been employed in the oxidation of the long chain tetradecane-1,14-diamine. 1H-NMR studies evidence simultaneous binding of the two protonated amine moieties to the crown ether receptors. This recognition has been used to pursue site-selective oxidation of a methylenic site, using hydrogen peroxide as oxidant in the presence of carboxylic acids as co-ligands. Excellent site-selectivity towards the central methylenic sites (C6 and C7) is observed, overcoming selectivity parameters derived from polar deactivation by simple amine protonation and selectivity observed in the oxidation of related monoprotonated amines.

3.
ChemCatChem ; 15(1): e202201072, 2023 Jan 09.
Article in English | MEDLINE | ID: mdl-37082112

ABSTRACT

The mechanism and the reactive species involved in the oxidation of alkenes, and alcohols with H2O2, catalysed by an in situ prepared mixture of a MnII salt, pyridine-2-carboxylic acid and a ketone is elucidated using substrate competition experiments, kinetic isotope effect (KIE) measurements, and atom tracking with 18O labelling. The data indicate that a single reactive species engages in the oxidation of both alkenes and alcohols. The primary KIE in the oxidation of benzyl alcohols is ca. 3.5 and shows the reactive species to be selective despite a zero order dependence on substrate concentration, and the high turnover frequencies (up to 30 s-1) observed. Selective 18O labelling identifies the origin of the oxygen atoms transferred to the substrate during oxidation, and is consistent with a highly reactive, e. g., [MnV(O)(OH)] or [MnV(O)2], species rather than an alkylperoxy or hydroperoxy species.

4.
Org Lett ; 25(2): 400-404, 2023 Jan 20.
Article in English | MEDLINE | ID: mdl-36626565

ABSTRACT

The identification of the beneficial pharmacokinetic properties of aza-spirocycles has led to the routine incorporation of these highly rigid and three-dimensional structures in pharmaceuticals. Herein, we report an operationally simple synthesis of spirocyclic dihydropyridines via an electrophile-induced dearomative semi-pinacol rearrangement of 4-(1'-hydroxycyclobutyl)pyridines. The various points for diversification of the spirocyclization precursors, as well as the synthetic utility of the amine and ketone functionalities in the products, provide the potential to rapidly assemble medicinally relevant spirocycles.

5.
Mult Scler Relat Disord ; 68: 104397, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36544326

ABSTRACT

BACKGROUND: The presence of lipid-specific oligoclonal IgM bands (LS-OCMB) in cerebrospinal fluid is associated with a more severe clinical multiple sclerosis (MS) course. OBJECTIVE: To investigate LS-OCMB as a prognostic biomarker of cognitive long-term outcomes in MS. METHODS: Ninety-nine patients underwent neuropsychological assessment. Cognitive performance between LS-OCMB- and LS-OCMB+ patients was compared adjusting by age, education, anxiety-depression, disease duration, and disability. RESULTS: LS-OCMB+ patients of ∼13 years of disease duration performed worse on Symbol Digit Modalities Test (SDMT) (p = 0.005). CONCLUSION: LS-OCMB+ perform worse on information processing speed and working memory (SDMT), suggesting that LS-OCMB could be a useful biomarker for long-term cognitive outcomes.


Subject(s)
Multiple Sclerosis , Humans , Multiple Sclerosis/complications , Multiple Sclerosis/diagnosis , Multiple Sclerosis/cerebrospinal fluid , Oligoclonal Bands/cerebrospinal fluid , Immunoglobulin M , Cognition , Neuropsychological Tests
6.
J Am Chem Soc ; 144(42): 19542-19558, 2022 10 26.
Article in English | MEDLINE | ID: mdl-36228322

ABSTRACT

Reactions that enable selective functionalization of strong aliphatic C-H bonds open new synthetic paths to rapidly increase molecular complexity and expand chemical space. Particularly valuable are reactions where site-selectivity can be directed toward a specific C-H bond by catalyst control. Herein we describe the catalytic site- and stereoselective γ-lactonization of unactivated primary C-H bonds in carboxylic acid substrates. The system relies on a chiral Mn catalyst that activates aqueous hydrogen peroxide to promote intramolecular lactonization under mild conditions, via carboxylate binding to the metal center. The system exhibits high site-selectivity and enables the oxidation of unactivated primary γ-C-H bonds even in the presence of intrinsically weaker and a priori more reactive secondary and tertiary ones at α- and ß-carbons. With substrates bearing nonequivalent γ-C-H bonds, the factors governing site-selectivity have been uncovered. Most remarkably, by manipulating the absolute chirality of the catalyst, γ-lactonization at methyl groups in gem-dimethyl structural units of rigid cyclic and bicyclic carboxylic acids can be achieved with unprecedented levels of diastereoselectivity. Such control has been successfully exploited in the late-stage lactonization of natural products such as camphoric, camphanic, ketopinic, and isoketopinic acids. DFT analysis points toward a rebound type mechanism initiated by intramolecular 1,7-HAT from a primary γ-C-H bond of the bound substrate to a highly reactive MnIV-oxyl intermediate, to deliver a carbon radical that rapidly lactonizes through carboxylate transfer. Intramolecular kinetic deuterium isotope effect and 18O labeling experiments provide strong support to this mechanistic picture.


Subject(s)
Biological Products , Carboxylic Acids , Biological Products/chemistry , Hydrogen Peroxide , Deuterium , Catalysis , Carbon/chemistry
7.
J Am Chem Soc ; 144(16): 7391-7401, 2022 04 27.
Article in English | MEDLINE | ID: mdl-35417154

ABSTRACT

The C(sp3)-H bond oxygenation of the cyclopropane-containing mechanistic probes 6-tert-butylspiro[2.5]octane and spiro[2.5]octane with hydrogen peroxide catalyzed by manganese complexes bearing aminopyridine tetradentate ligands has been studied. Mixtures of unrearranged and rearranged oxygenation products (alcohols, ketones, and esters) are obtained, suggesting the involvement of cationic intermediates and the contribution of different pathways following the initial hydrogen atom transfer-based C-H bond cleavage step. Despite such a complex mechanistic scenario, a judicious choice of the catalyst structure and reaction conditions (solvent, temperature, and carboxylic acid) could be employed to resolve these oxygenation pathways, leading, with the former substrate, to conditions where a single unrearranged or rearranged product is obtained in good isolated yield. Taken together, the work demonstrates an unprecedented ability to precisely direct the chemoselectivity of the C-H oxidation reaction, discriminating among multiple pathways. In addition, these results conclusively demonstrate that stereospecific C(sp3)-H oxidation can take place via a cationic intermediate and that this path can become exclusive in governing product formation, expanding the available toolbox of aliphatic C-H bond oxygenations. The implications of these findings are discussed in the framework of the development of synthetically useful C-H functionalization procedures and the associated mechanistic features.


Subject(s)
Manganese , Octanes , Alcohols , Catalysis , Manganese/chemistry , Oxidation-Reduction
8.
Angew Chem Int Ed Engl ; 61(7): e202114932, 2022 02 07.
Article in English | MEDLINE | ID: mdl-34854188

ABSTRACT

Precise delivery of a proton plays a key role in O2 activation at iron oxygenases, enabling the crucial O-O cleavage step that generates the oxidizing high-valent metal-oxo species. Such a proton is delivered by acidic residues that may either directly bind the iron center or lie in its second coordination sphere. Herein, a supramolecular strategy for enzyme-like H2 O2 activation at a biologically inspired manganese catalyst, with a nearly stoichiometric amount (1-1.5 equiv) of a carboxylic acid is disclosed. Key for this strategy is the incorporation of an α,ω-amino acid in the second coordination sphere of a chiral catalyst via remote ammonium-crown ether recognition. The properly positioned carboxylic acid function enables effective activation of hydrogen peroxide, leading to catalytic asymmetric epoxidation. Modulation of both amino acid and catalyst structure can tune the efficiency and the enantioselectivity of the reaction, and a study on the oxidative degradation pathway of the system is presented.

9.
Environ Int ; 155: 106662, 2021 10.
Article in English | MEDLINE | ID: mdl-34098335

ABSTRACT

BACKGROUND: The evidence on the association between ultrafine (UFP) particles and mortality is still inconsistent. Moreover, health effects of specific UFP sources have not been explored. We assessed the impact of UFP sources on daily mortality in Barcelona, Helsinki, London, and Zurich. METHODS: UFP sources were previously identified and quantified for the four cities: daily contributions of photonucleation, two traffic sources (fresh traffic and urban, with size mode around 30 nm and 70 nm, respectively), and secondary aerosols were obtained from data from an urban background station. Different periods were investigated in each city: Barcelona 2013-2016, Helsinki 2009-2016, London 2010-2016, and Zurich 2011-2014. The associations between total particle number concentrations (PNC) and UFP sources and daily (natural, cardiovascular [CVD], and respiratory) mortality were investigated using city-specific generalized linear models (GLM) with quasi-Poisson regression. RESULTS: We found inconsistent results across cities, sources, and lags for associations with natural, CVD, and respiratory mortality. Increased risk was observed for total PNC and natural mortality in Helsinki (lag 2; 1.3% [0.07%, 2.5%]), CVD mortality in Barcelona (lag 1; 3.7% [0.17%, 7.4%]) and Zurich (lag 0; 3.8% [0.31%, 7.4%]), and respiratory mortality in London (lag 3; 2.6% [0.84%, 4.45%]) and Zurich (lag 1; 9.4% [1.0%, 17.9%]). A similar pattern of associations between health outcomes and total PNC was followed by the fresh traffic source, for which we also found the same associations and lags as for total PNC. The urban source (mostly aged traffic) was associated with respiratory mortality in Zurich (lag 1; 12.5% [1.7%, 24.2%]) and London (lag 3; 2.4% [0.90%, 4.0%]) while the secondary source was associated with respiratory mortality in Zurich (lag 1: 12.0% [0.63%, 24.5%]) and Helsinki (4.7% [0.11%, 9.5%]). Reduced risk for the photonucleation source was observed for respiratory mortality in Barcelona (lag 2, -8.6% [-14.5%, -2.4%]) and for CVD mortality in Helsinki, as this source is present only in clean atmospheres (lag 1, -1.48 [-2.75, -0.21]). CONCLUSIONS: We found inconsistent results across cities, sources and lags for associations with natural, CVD, and respiratory mortality.


Subject(s)
Air Pollutants , Air Pollution , Aged , Air Pollutants/analysis , Air Pollutants/toxicity , Air Pollution/analysis , Cities , Humans , Particle Size , Particulate Matter/analysis
10.
Chemistry ; 27(15): 4946-4954, 2021 Mar 12.
Article in English | MEDLINE | ID: mdl-33350013

ABSTRACT

Oxoiron(IV) complexes bearing tetradentate ligands have been extensively studied as models for the active oxidants in non-heme iron-dependent enzymes. These species are commonly generated by oxidation of their ferrous precursors. The mechanisms of these reactions have seldom been investigated. In this work, the reaction kinetics of complexes [FeII (CH3 CN)2 L](SbF6 )2 ([1](SbF6 )2 and [2](SbF6 )2 ) and [FeII (CF3 SO3 )2 L] ([1](OTf)2 and [2](OTf)2 (1, L=Me,H Pytacn; 2, L=nP,H Pytacn; R,R' Pytacn=1-[(6-R'-2-pyridyl)methyl]-4,7- di-R-1,4,7-triazacyclononane) with Bu4 NIO4 to form the corresponding [FeIV (O)(CH3 CN)L]2+ (3, L=Me,H Pytacn; 4, L=nP,H Pytacn) species was studied in acetonitrile/acetone at low temperatures. The reactions occur in a single kinetic step with activation parameters independent of the nature of the anion and similar to those obtained for the substitution reaction with Cl- as entering ligand, which indicates that formation of [FeIV (O)(CH3 CN)L]2+ is kinetically controlled by substitution in the starting complex to form [FeII (IO4 )(CH3 CN)L]+ intermediates that are converted rapidly to oxo complexes 3 and 4. The kinetics of the reaction is strongly dependent on the spin state of the starting complex. A detailed analysis of the magnetic susceptibility and kinetic data for the triflate complexes reveals that the experimental values of the activation parameters for both complexes are the result of partial compensation of the contributions from the thermodynamic parameters for the spin-crossover equilibrium and the activation parameters for substitution. The observation of these opposite and compensating effects by modifying the steric hindrance at the ligand illustrates so far unconsidered factors governing the mechanism of oxygen atom transfer leading to high-valent iron oxo species.

11.
Angew Chem Int Ed Engl ; 60(9): 4740-4746, 2021 02 23.
Article in English | MEDLINE | ID: mdl-33210804

ABSTRACT

α-Amino acids represent a valuable class of natural products employed as building blocks in biological and chemical synthesis. Because of the limited number of natural amino acids available, and of their widespread application in proteomics, diagnosis, drug delivery and catalysis, there is an increasing demand for the development of procedures for the preparation of modified analogues. Herein, we show that the use of bioinspired manganese catalysts and H2 O2 under mild conditions, provides access to modified α-amino acids via γ-C-H bond lactonization. The system can efficiently target 1°, 2° and 3° γ-C-H bonds of α-substituted and achiral α,α-disubstituted α-amino acids with outstanding site-selectivity, good to excellent diastereoselectivity and (where applicable) enantioselectivity. This methodology may be considered alternative to well-established organometallic procedures.

12.
Org Lett ; 21(7): 2430-2435, 2019 04 05.
Article in English | MEDLINE | ID: mdl-30883137

ABSTRACT

Enantioselective epoxidation of ß,ß-disubstituted enamides with aqueous hydrogen peroxide and a novel manganese catalyst is described. Epoxidation is stereospecific and proceeds fast under mild conditions. Amides are disclosed as key functional groups to enable high enantioselectivity.

13.
Dalton Trans ; 47(6): 1755-1763, 2018 Feb 06.
Article in English | MEDLINE | ID: mdl-29344593

ABSTRACT

The stereoselective oxidation of hydrocarbons is one of the most challenging reactions for synthetic chemists. However, this transformation is one of the most common reactions in nature. Metalloenzymes that catalyze this transformation are taken as inspiration for the development of new catalysts. There are several examples in the literature where either peptides or metal catalysts are used in the stereoselective oxidation reaction, but the synergistic combination of both systems is still a non-explored field. The use of metallopeptides in biologically inspired oxidation reactions is discussed in this perspective.

SELECTION OF CITATIONS
SEARCH DETAIL
...