Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters










Publication year range
1.
Fungal Biol ; 128(3): 1806-1813, 2024 May.
Article in English | MEDLINE | ID: mdl-38796265

ABSTRACT

Citrus black spot (CBS) caused by Phyllosticta citricarpa was reported for the first time in Tunisia in 2019. This was also the first reported occurrence of the disease in a Mediterranean climate. In Tunisia, CBS is mainly found in lemon (Citrus limon) orchards, and is seldom observed on sweet orange (Citrus × sinensis). This recent finding in North Africa raises questions about how the disease has been able to spread under Mediterranean climatic conditions. In this work, 216 Phyllosticta strains collected from lemon orchards in 2021, 2022 and 2023 throughout the country's main citrus-growing provinces were characterised by species morphological and molecular identification, mating type and Simple Sequence Repeats (SSR) microsatellite genotyping (MLG). P. citricarpa was the only species found to be associated with CBS in Tunisia. Although P. citricarpa is a heterothallic fungal species, potentially able to reproduce both sexually and asexually, a single mating type (MAT 1-1-1) idiomorph was found in the population. In addition, three MLGs were observed, across ten microsatellite loci, one of which was massively represented (93 %), indicating a clonal population. The clonality observed suggests a single recent introduction of the pathogen into the country. These findings support the idea that in Tunisia, P. citricarpa only reproduces asexually by pycniospores, with a relatively limited dispersal potential. This is consistent with the absence of pseudothecia on the leaf litter. These results show that CBS is able to thrive under Mediterranean conditions, even in the absence of sexual reproduction. This should be taken into consideration for CBS risk assessment and management.


Subject(s)
Ascomycota , Citrus , Genes, Mating Type, Fungal , Genotype , Microsatellite Repeats , Plant Diseases , Tunisia , Citrus/microbiology , Ascomycota/genetics , Ascomycota/classification , Ascomycota/isolation & purification , Plant Diseases/microbiology , Reproduction, Asexual , Genotyping Techniques
2.
Phytopathology ; 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38537081

ABSTRACT

Outbreak response to quarantine pathogens and pests in the European Union (EU) is regulated by the EU Plant Health Law, but the performance of outbreak management plans in terms of their effectiveness and efficiency has been quantified only to a limited extent. As a case study, the disease dynamics of almond leaf scorch, caused by Xylella fastidiosa (Xf), in the affected area of Alicante, Spain, were approximated using an individual-based spatial epidemiological model. The emergence of this outbreak was dated based on phylogenetic studies, and official surveys were used to delimit the current extent of the disease. Different survey strategies and disease control measures were compared to determine their effectiveness and efficiency for outbreak management in relation to a baseline scenario without interventions. One-step and two-step survey approaches were compared with different confidence levels, buffer zone sizes and eradication radii, including those set by the EU legislation for Xf. The effect of disease control interventions was also considered by decreasing the transmission rate in the buffer zone. All outbreak management plans reduced the number of infected trees (effectiveness) but large differences were observed in the number of susceptible trees not eradicated (efficiency). The two-step survey approach and high confidence level increased the efficiency, while also reducing the transmission rate. Only the outbreak management plans with the two-step survey approach removed infected trees completely, but they required greater survey efforts. Although control measures reduced disease spread, surveillance was the key factor in the effectiveness and efficiency of the outbreak management plans.

3.
Plant Dis ; 108(3): 737-745, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37755415

ABSTRACT

Red leaf blotch (RLB) of almond, caused by the ascomycete Polystigma amygdalinum, is a severe foliar disease endemic in the Mediterranean Basin and Middle East. Airborne ascospores of P. amygdalinum were monitored from 2019 to 2021 in two almond orchards in Lleida, Spain, and a Bayesian beta regression was used to model its seasonal dynamics. The selected model incorporated accumulated degree-days (ADD), ADD considering both vapor pressure deficit and rainfall as fixed effects, and a random effect for the year and location. The performance of the model was evaluated in 2022 to optimize RLB fungicide programs by comparing the use of model predictions and action thresholds with the standard program. Two variants were additionally considered in each program to set the frequency between applications, based on (i) a fixed frequency of 21 days or (ii) specific meteorological criteria (spraying within 7 days after rainfalls greater than 10 mm, with daily mean temperatures between 10 and 20°C, and with a minimum frequency of 21 days between applications). Programs were evaluated in terms of RLB incidence and number of applications. The program based on the model with periodic fungicide applications was similarly effective as the standard program, resulting only in a 2.6% higher RLB incidence but with fewer applications (three to four, compared with seven in the standard program). When setting the frequency between applications by using the meteorological criteria, a higher reduction in the number of applications (two to three) was observed, while RLB incidence increased by roughly 16% in both programs. Therefore, the model developed in this study may represent a valuable tool toward a more sustainable fungicide schedule for the control of almond RLB in northeast Spain.


Subject(s)
Fungicides, Industrial , Phyllachorales , Prunus dulcis , Fungicides, Industrial/pharmacology , Bayes Theorem , Plant Leaves
4.
Front Plant Sci ; 14: 1256935, 2023.
Article in English | MEDLINE | ID: mdl-38111874

ABSTRACT

Huanglongbing (HLB) is one of the most devastating citrus diseases worldwide. It is associated with the non-culture bacteria Candidatus Liberibacter spp., which can be transmitted by grafting and/or the psyllid vectors Diaphorina citri (ACP) and Trioza erytreae (AfCP). Although HLB has not been reported in the Mediterranean Basin to date, both vectors are present, and thus represent a serious threat to the citrus industry in this region. Resistant citrus cultivars or effective therapeutic treatments are not currently available for HLB. Nevertheless, area-wide pest management via coordinated management efforts over large areas has been implemented in Brazil, China and the USA for HLB control. This study proposes an open access flexible methodology to address area-wide management of both HLB vectors in the Mediterranean Basin. Based on a risk-based approach which considers climatic information and other variables that may influence vector introduction and spread, such as conventional, organic, abandoned and residential citrus areas as well as transportation corridors, an area-wide management division in pest management areas (PMAs) is proposed. The size and location of these PMAs were estimated by means of a hierarchical clustering algorithm with spatial constraints whose performance was assessed under different configuration scenarios. This proposal may assist policymakers and the citrus industry of the citrus-growing areas of the Mediterranean Basin in risk management planning in the case of the spread of HLB vectors or a possible introduction of the disease. Additionally, it may be a valuable resource to inform opinion dynamic models, enabling the identification of pivotal factors for the success of control measures.

5.
Sci Data ; 10(1): 731, 2023 10 21.
Article in English | MEDLINE | ID: mdl-37865703

ABSTRACT

World trade has greatly increased in recent decades, together with a higher risk of introducing non-indigenous pests. Introduction trends show no sign of saturation, and it seems likely that many more species will enter and establish in new territories in the future. A key challenge in analysing pest invasion patterns is the paucity of historical data on pest introductions. A comprehensive dataset of pests' introductions in the EU, including their spatial occurrences, is not currently available and information is scattered across different sources or buried in the scientific literature. Therefore, we collected pests' introduction information (e.g., year, host) from online scientific databases and literature; we then gathered primary spatial data related to the site of first introductions. Finally, we identified the potential pathways of entry for each pest. The dataset contains expert-revised data on 278 pests introduced in the EU between 1999 and 2019, alongside their spatial occurrence and potential pathways of entry, providing a basis to better understand the factors associated with the likelihood of pest introduction. It is important to note that this dataset does not contain the current distribution of the introduced pests, but only records of their first introduction in the EU.


Subject(s)
Databases, Factual , Pest Control , Plants , Hong Kong , Probability
6.
EFSA J ; 21(1): e07771, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36694843

ABSTRACT

The European Commission requested the EFSA Panel on Plant Health to prepare and deliver a scientific opinion on the efficacy of a postharvest treatment aiming to eradicate all developmental stages of Guatemalan potato tuber moth Tecia solanivora (Lepidoptera: Gelechiidae) in ware potatoes. The Panel evaluated the scientific publication describing the elevated CO2 treatment, which was defined as: 10-day exposure to 30% CO2, 20% O2 and 50% N2 in controlled atmosphere at 17°C on the variety Negra Yema de Huevo (Papas Antiguas de Canarias, PDO potatoes, Solanum chaucha). In the scientific publication, the treatment was applied under semi-commercial and commercial conditions on artificially and field-infested tubers. The effect of the pest developmental stage on the treatment efficacy was investigated with artificial infestation of potato tubers with eggs, neonate and second instar larvae. Pupae and adults were placed in separate containers during the treatment. However, the third and fourth larval instars were not investigated. Further limitations were the sample size in the experiments, the mortality rate in the control group and the unknown level of infestation of the naturally infested potato tubers. It was not possible to evaluate the degree of pest freedom due to incomplete data on the conditions of production, i.e. the infestation level in the field. The Panel was able to conclude that although no surviving insects were observed in the performed experiments, the statistical evaluation of the presented results from the commercial trial indicate that it cannot be excluded that insects would survive the treatment. For example, based on the data provided the 95% confidence interval of the survival rate for eggs was: 0%-0.453%.

7.
Sci Rep ; 12(1): 19876, 2022 11 18.
Article in English | MEDLINE | ID: mdl-36400797

ABSTRACT

Citrus black spot (CBS), caused by the fungus Phyllosticta citricarpa, is associated with serious yield and quality losses. The climate suitability of the Mediterranean Basin for CBS development has been long debated. However, CBS has been described in Tunisia. In this study, a generic model was used to simulate potential infections by ascospores and pycnidiospores together with a degree-day model to predict the onset of ascospore release. High-resolution climatic data were retrieved from the ERA5-Land dataset for the citrus-growing regions in the Mediterranean Basin and other locations where CBS is present. In general, the onset of ascospore release was predicted to occur late in spring, but there is no agreement on the adequacy of this empirical model for extrapolation to the Mediterranean Basin. The generic model indicated that infections by ascospores and pycnidiospores would be concentrated mainly in autumn, as well as in spring for pycnidiospores. In contrast to previous studies, the percentage of hours suitable for infection was higher for pycnidiospores than for ascospores. The values obtained with the generic infection model for Tunisia and several CBS-affected locations worldwide were similar to those for other citrus-growing regions in Europe and Northern Africa. These results support previous work indicating that the climate of the Mediterranean Basin is suitable for CBS development.


Subject(s)
Ascomycota , Citrus , Citrus/microbiology , Plant Diseases/microbiology , Spores, Fungal , Tunisia
8.
EFSA J ; 20(6): e07391, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35774585

ABSTRACT

The European Commission requested the EFSA Panel on Plant Health to prepare and deliver risk assessments for commodities listed in Commission Implementing Regulation (EU) 2018/2019 as 'High risk plants, plant products and other objects'. This Scientific Opinion covers plant health risks posed by plants of Prunus domestica grafted on Prunus cerasifera imported from Ukraine, taking into account the available scientific information, including the technical information provided by Ukraine. All pests associated with the commodity were evaluated against specific criteria for their relevance for this opinion. One quarantine pest (Lopholeucaspis japonica), two protected zone quarantine pests (Erwinia amylovora and Xanthomonas arboricola pv. pruni) and one non-regulated pest (Eotetranychus prunicola) that fulfilled all relevant criteria were selected for further evaluation. For these four pests, the risk mitigation measures proposed in the technical dossier from Ukraine were evaluated taking into account the possible limiting factors. For the selected pests, an expert judgement is given on the likelihood of pest freedom taking into consideration the risk mitigation measures acting on the pest, including uncertainties associated with the assessment. The degree of pest freedom varies among the pests evaluated, with Xanthomonas arboricola pv. pruni being the pest most frequently expected on the imported plants. The Expert Knowledge Elicitation indicated with 95% certainty that between 9,870 and 10,000 bundles (consisting of 10 plants each) per 10,000 would be free from Xanthomonas arboricola pv. pruni.

9.
Phytopathology ; 112(5): 1036-1045, 2022 May.
Article in English | MEDLINE | ID: mdl-34732079

ABSTRACT

Spatial species distribution models often assume isotropy and stationarity, implying that spatial dependence is direction-invariant and uniform throughout the study area. However, these assumptions are violated when dispersal barriers are present. Despite this, the issue of nonstationarity has been little explored in the context of plant health. The objective of this study was to evaluate the influence of barriers in the distribution of Xylella fastidiosa in the demarcated area in Alicante, Spain. Occurrence data from 2018 were analyzed through spatial Bayesian hierarchical models. The stationary model, illustrating a scenario without control interventions or geographical features, was compared with three nonstationary models: a model with mountains as physical barriers, and two models with a continuous and discontinuous perimeter barrier representing hypothetical control interventions. In the stationary model, the posterior mean of the spatial range, as the distance where two observations are uncorrelated, was 4,030 m 95% credible interval (2,907 to 5,564). This distance can be used to define the buffer zone in the demarcated area. The predicted probability of X. fastidiosa presence in the area outside the barrier was 0.46 with the stationary model, whereas it was reduced to 0.29 and 0.36 with the continuous and discontinuous barrier models, respectively. Differences between the discontinuous and continuous barrier models showed that breaks, where no control interventions were implemented, resulted in a higher predicted probability of X. fastidiosa presence in the areas with low sampling intensity. These results may help authorities prioritize the areas for surveillance and disease control.[Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.


Subject(s)
Plant Diseases , Xylella , Bayes Theorem , Spain
10.
Phytopathology ; 111(7): 1184-1192, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33231497

ABSTRACT

Circular leaf spot (CLS), caused by Plurivorosphaerella nawae, is a serious disease affecting persimmon (Diospyros kaki) that is characterized by necrotic lesions on leaves, defoliation, and fruit drop. Under Mediterranean conditions, P. nawae forms pseudothecia in the leaf litter in winter, and ascospores are released in spring, infecting susceptible leaves. Persimmon growers are advised to apply fungicides for CLS control during the period of inoculum availability, which was previously defined based on ascospore counts under the microscope. A model of inoculum availability of P. nawae was developed and evaluated as an alternative to ascospore counts. Leaf litter samples were collected weekly in L'Alcúdia (Spain) from 2010 to 2015. Leaves were soaked and placed in a wind tunnel, and the released ascospores of P. nawae were counted. Hierarchical Bayesian beta regression methods were used to model the dynamics of ascospore production in the leaf litter. The selected model included accumulated degree-days (ADDs) and ADDs taking into account the vapor pressure deficit (ADDvpd) as fixed effects and year as random effect. This model had a mean absolute error of 0.042 and a root mean square error of 0.062. The beta regression model was evaluated in four orchards from 2010 to 2015. Higher accuracy was obtained at the beginning and the end of the ascospore production period, which are the events of interest to schedule fungicide sprays for CLS control in Spain. This same modeling framework can be extended to other fungal plant pathogens whose inoculum dynamics are expressed as proportion data.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.


Subject(s)
Diospyros , Ascomycota , Bayes Theorem , Fruit , Plant Diseases
11.
Front Plant Sci ; 11: 1204, 2020.
Article in English | MEDLINE | ID: mdl-32922416

ABSTRACT

The plant-pathogenic bacterium Xylella fastidiosa was first reported in Europe in 2013, in the province of Lecce, Italy, where extensive areas were affected by the olive quick decline syndrome, caused by the subsp. pauca. In Alicante, Spain, almond leaf scorch, caused by X. fastidiosa subsp. multiplex, was detected in 2017. The effects of climatic and spatial factors on the geographic distribution of X. fastidiosa in these two infested regions in Europe were studied. The presence/absence data of X. fastidiosa in the official surveys were analyzed using Bayesian hierarchical models through the integrated nested Laplace approximation (INLA) methodology. Climatic covariates were obtained from the WorldClim v.2 database. A categorical variable was also included according to Purcell's minimum winter temperature thresholds for the risk of occurrence of Pierce's disease of grapevine, caused by X. fastidiosa subsp. fastidiosa. In Alicante, data were presented aggregated on a 1 km grid (lattice data), where the spatial effect was included in the model through a conditional autoregressive structure. In Lecce, data were observed at continuous locations occurring within a defined spatial domain (geostatistical data). Therefore, the spatial effect was included via the stochastic partial differential equation approach. In Alicante, the pathogen was detected in all four of Purcell's categories, illustrating the environmental plasticity of the subsp. multiplex. Here, none of the climatic covariates were retained in the selected model. Only two of Purcell's categories were represented in Lecce. The mean diurnal range (bio2) and the mean temperature of the wettest quarter (bio8) were retained in the selected model, with a negative relationship with the presence of the pathogen. However, this may be due to the heterogeneous sampling distribution having a confounding effect with the climatic covariates. In both regions, the spatial structure had a strong influence on the models, but not the climatic covariates. Therefore, pathogen distribution was largely defined by the spatial relationship between geographic locations. This substantial contribution of the spatial effect in the models might indicate that the current extent of X. fastidiosa in the study regions had arisen from a single focus or from several foci, which have been coalesced.

12.
Plant Dis ; 104(9): 2418-2425, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32631199

ABSTRACT

The incidence of peach powdery mildew (PPM) on fruit was monitored in commercial peach orchards to i) describe the disease progress in relation to several environmental parameters and ii) establish an operating threshold to initiate a fungicide spray program based on accumulated degree-day (ADD) data. A beta-regression model for disease incidence showed a substantial contribution of the random effects orchard and year, whereas relevant fixed effects corresponded to ADD, wetness duration, and ADD considering vapor pressure deficit and rain. When beta-regression models were fitted for each orchard and year considering only ADD, disease onset was observed at 242 ± 13 ADD and symptoms did not develop further after 484 ± 42 ADD. An operating threshold to initiate fungicide applications was established at 220 ADD, coinciding with a PPM incidence in fruit around 0.05. A validation was further conducted by comparing PPM incidence in i) a standard, calendar-based program, ii) a program with applications initiated at 220 ADD, and iii) a nontreated control. A statistically relevant reduction in disease incidence in fruit was obtained with both fungicide programs, from 0.244 recorded in the control to 0.073 with the 220-ADD alert program, and 0.049 with the standard program. The 220-ADD alert program resulted in 33% reduction in fungicide applications.


Subject(s)
Ascomycota , Fungicides, Industrial , Prunus persica , Plant Diseases , Spain
13.
Proc Natl Acad Sci U S A ; 117(17): 9250-9259, 2020 04 28.
Article in English | MEDLINE | ID: mdl-32284411

ABSTRACT

Xylella fastidiosa is the causal agent of plant diseases that cause massive economic damage. In 2013, a strain of the bacterium was, for the first time, detected in the European territory (Italy), causing the Olive Quick Decline Syndrome. We simulate future spread of the disease based on climatic-suitability modeling and radial expansion of the invaded territory. An economic model is developed to compute impact based on discounted foregone profits and losses in investment. The model projects impact for Italy, Greece, and Spain, as these countries account for around 95% of the European olive oil production. Climatic suitability modeling indicates that, depending on the suitability threshold, 95.5 to 98.9%, 99.2 to 99.8%, and 84.6 to 99.1% of the national areas of production fall into suitable territory in Italy, Greece, and Spain, respectively. For Italy, across the considered rates of radial range expansion the potential economic impact over 50 y ranges from 1.9 billion to 5.2 billion Euros for the economic worst-case scenario, in which production ceases after orchards die off. If replanting with resistant varieties is feasible, the impact ranges from 0.6 billion to 1.6 billion Euros. Depending on whether replanting is feasible, between 0.5 billion and 1.3 billion Euros can be saved over the course of 50 y if disease spread is reduced from 5.18 to 1.1 km per year. The analysis stresses the necessity to strengthen the ongoing research on cultivar resistance traits and application of phytosanitary measures, including vector control and inoculum suppression, by removing host plants.


Subject(s)
Olea/microbiology , Plant Diseases/microbiology , Xylella/metabolism , Greece , Italy , Models, Economic , Models, Theoretical , Olea/metabolism , Spain , Xylella/pathogenicity
14.
Mol Plant Pathol ; 19(9): 2077-2093, 2018 09.
Article in English | MEDLINE | ID: mdl-29573543

ABSTRACT

Terpene volatiles play an important role in the interactions between specialized pathogens and fruits. Citrus black spot (CBS), caused by the fungus Phyllosticta citricarpa, is associated with crop losses in different citrus-growing areas worldwide. The pathogen may infect the fruit for 20-24 weeks after petal fall, but the typical hard spot symptoms appear when the fruit have almost reached maturity, caused by fungal colonization and the induction of cell lysis around essential oil cavities. d-Limonene represents approximately 95% of the total oil gland content in mature orange fruit. Herein, we investigated whether orange fruit with reduced d-limonene content in peel oil glands via an antisense (AS) approach may affect fruit interaction with P. citricarpa relative to empty vector (EV) controls. AS fruit showed enhanced resistance to the fungus relative to EV fruit. Because of the reduced d-limonene content, an over-accumulation of linalool and other monoterpene alcohols was found in AS relative to EV fruit. A global gene expression analysis at 2 h and 8 days after inoculation with P. citricarpa revealed the activation of defence responses in AS fruit via the up-regulation of different pathogenesis-related (PR) protein genes, probably as a result of enhanced constitutive accumulation of linalool and other alcohols. When assayed in vitro and in vivo, monoterpene alcohols at the concentrations present in AS fruit showed strong antifungal activity. We show here that terpene engineering in fruit peels could be a promising method for the development of new strategies to obtain resistance to fruit diseases.


Subject(s)
Citrus sinensis/metabolism , Citrus sinensis/microbiology , Fruit/metabolism , Fruit/microbiology , Genetic Engineering/methods , Intramolecular Lyases/metabolism , Monoterpenes/metabolism , Acyclic Monoterpenes
15.
EFSA J ; 16(1): e05114, 2018 Jan.
Article in English | MEDLINE | ID: mdl-32625665

ABSTRACT

The Plant Health Panel reviewed the paper by Guarnaccia et al. (2017) and compared their findings with previous predictions on the establishment of Phyllosticta citricarpa. Four species of Phyllosticta were found by Guarnaccia et al. (2017) in Europe. P. citricarpa and P. capitalensis are well-defined species, with P. citricarpa recorded for the first time in Europe, confirming predictions by Magarey et al. (2015) and EFSA (2008, 2014, 2016) that P. citricarpa can establish in some European citrus-growing regions. Two new species P. paracitricarpa and P. paracapitalensis were also described, with P. paracitricarpa (found only in Greece) shown to be pathogenic on sweet orange fruits. Genotyping of the P. citricarpa isolates suggests at least two independent introductions, with the population in Portugal being different from that present in Malta and Italy. P. citricarpa and P. paracitricarpa were isolated only from leaf litter in backyards. However, since P. citricarpa does not infect or colonise dead leaves, the pathogen must have infected the above living leaves in citrus trees nearby. Guarnaccia et al. (2017) considered introduction to be a consequence of P. citricarpa having long been present or of illegal movement of planting material. In the Panel's view, the fruit pathway would be an equally or more likely origin. The authors did not report how surveys for citrus black spot (CBS) disease were carried out, therefore their claim that there was no CBS disease even where the pathogen was present is not supported by the results presented. From previous simulations, the locations where Guarnaccia et al. (2017) found P. citricarpa or P. paracitricarpa were conducive for P. citricarpa establishment, with number of simulated infection events by pycnidiospores comparable to sites of CBS occurrence outside Europe. Preliminary surveys by National Plant Protection Organisations (NPPOs) have not confirmed so far the findings by Guarnaccia et al. (2017) but monitoring is still ongoing.

16.
EFSA J ; 16(10): e05442, 2018 Oct.
Article in English | MEDLINE | ID: mdl-32625721

ABSTRACT

Following a request from the European Commission, the EFSA Panel on Plant Health performed a pest categorisation of Melampsora farlowii, a well-defined and distinguishable fungus of the family Melampsoraceae. M. farlowii is the causal agent of a leaf and twig rust of hemlocks (Tsuga spp.) in eastern North America. The pathogen is regulated in Council Directive 2000/29/EC (Annex IAI) as a harmful organism whose introduction into the EU is banned. M. farlowii is not reported to be present in Europe and could enter the EU via host plants for planting and cut branches. Cones and fruits are listed as plant parts that can carry the pest in trade and transport, but are not regulated. The pathogen could establish in the EU, as climatic conditions are favourable and Tsuga spp. have been planted as ornamentals and in plantations in several EU countries. M. farlowii would be able to spread following establishment by human movement of host plants for planting and cut branches, as well as natural spread. Should the pathogen be introduced in the EU, impacts can be expected on Tsuga spp. plantations, ornamental trees and especially nurseries. Hemlock rust is considered a destructive rust attacking Tsuga spp., particularly Tsuga canadensis in nurseries. The main uncertainties concern whether the impact of the pathogen in plantations under European conditions could be different than observed in eastern North America, whether fruit/cones of Tsuga can be a pathway of entry, and the dissemination potential of the pathogen under European conditions. However, M. farlowii is found in North America in most of the natural distribution range of T. canadensis, suggesting little dispersal limitation of the pathogen. The criteria assessed by the Panel for consideration as a potential quarantine pest are met, whilst, for regulated non-quarantine pests, the criterion on the pest presence in the EU is not met.

17.
EFSA J ; 16(10): e05443, 2018 Oct.
Article in English | MEDLINE | ID: mdl-32625722

ABSTRACT

Following a request from the European Commission, the EFSA Panel on Plant Health performed a pest categorisation of Cronartium harknessii, Cronartium kurilense and Cronartium sahoanum, which are well-defined and distinguishable tree fungal pathogens of the family Cronartiaceae. In 2018, these species were moved from the genus Endocronartium to the genus Cronartium. These pathogens are not known to be present in the EU and are regulated in Council Directive 2000/29/EC (Annex IAI) (as non-European Endocronartium spp.) as harmful organisms whose introduction into the EU is banned. These three fungi are autoecious rusts completing their life cycle on Pinus spp. C. harknessii is known as the western gall rust or pine-pine gall rust in North America (Canada, the USA and Mexico). C. kurilense and C. sahoanum are reported from Russia (North Kuril Islands) and Japan. The pathogens could enter the EU via host plants for planting and cut branches. The pathogens could establish in the EU, as climatic conditions are favourable and Pinus spp. are common. The pathogens would be able to spread following establishment by movement of host plants for planting and cut branches, as well as natural spread. Should these pathogens be introduced in the EU, impacts can be expected on pine forests, plantations, ornamental trees and nurseries. The pathogens cause formation of stem galls, which kill young trees and result in stem defect in older trees. The main knowledge gap concerns the limited available information on C. kurilense and C. sahoanum compared to C. harknessii. The criteria assessed by the Panel for consideration of C. harknessii, C. kurilense and C. sahoanum as potential quarantine pests are met, whilst, for regulated non-quarantine pests, the criterion on the pest presence in the EU is not met.

18.
EFSA J ; 16(12): e05511, 2018 Dec.
Article in English | MEDLINE | ID: mdl-32625788

ABSTRACT

Following a request from the European Commission, the EFSA Panel on Plant Health performed a pest categorisation of Cronartium spp. (non-EU), a well-defined and distinguishable group of fungal pathogens of the family Cronartiaceae. There are at least 40 species described within the Cronartium genus, of which two are considered native to the EU (C. gentianeum and C. pini) and one has been introduced in the 19th century (C. ribicola) and is now widespread in the EU - these three species are thus not part of this pest categorisation. In addition, the non-EU C. harknessii, C. kurilense and C. sahoanum were already dealt with in a previous pest categorisation. All the non-EU Cronartium species are not known to be present in the EU and are regulated in Council Directive 2000/29/EC (Annex IAI) as harmful organisms whose introduction into the EU is banned. Cronartium spp. are biotrophic obligate plant pathogens. Many of the North American Cronartium species alternate between the aecial host Pinus spp. and telial hosts of various dicotyledonous plants. C. conigenum, C. orientale, C. quercuum and C. strobilinum have different Quercus spp. as their telial hosts. C. orientale and C. quercuum also infect Castanea spp. and Castanopsis spp. The pathogens could enter the EU via host plants for planting and cut flowers and branches. Non-EU Cronartium spp. could establish in the EU, as climatic conditions are favourable to many of them and Pinus and Quercus spp. are common. The pathogens would be able to spread following establishment by movement of host plants, as well as natural spread. Should non-EU Cronartium spp. be introduced in the EU, impacts can be expected on pine, oak and chestnut woodlands, plantations, ornamental trees and nurseries. The Cronartium species present in North America cause important tree diseases. Symptoms on Pinus spp. differ between Cronartium spp., but include galls, cankers, dieback of branches and stems, deformity, tree and cone death. The main knowledge gap concerns the limited available information on (sub)tropical Cronartium spp. The criteria assessed by the Panel for consideration of Cronartium spp. (non-EU) as potential quarantine pests are met, while, for regulated non-quarantine pests, the criterion on the pest presence in the EU is not met.

19.
EFSA J ; 16(7): e05384, 2018 Jul.
Article in English | MEDLINE | ID: mdl-32626005

ABSTRACT

Following a request from the European Commission, the EFSA Panel on Plant Health performed a pest categorisation of Arceuthobium spp. (non-EU), a well-defined and distinguishable group of parasitic plant species of the family Viscaceae, also known as dwarf mistletoes. These are flowering plants parasitising a wide range of conifers of the families Pinaceae and Cupressaceae. Arceuthobium species (non-EU) are regulated in Council Directive 2000/29/EC (Annex IAI) as harmful organisms whose introduction into the EU is banned. Many Arceuthobium species are recognised, with most dwarf mistletoes native in the New World, and north-western Mexico and the western USA as the centre of diversity for the genus. Only two Arceuthobium species are native (and reported to be present) in the EU (Arceuthobium azoricum and Arceuthobium oxycedrum), which are thus not part of this pest categorisation. Hosts of non-EU dwarf mistletoes include species of the genera Abies, Cupressus, Juniperus, Larix, Picea, Pinus, Pseudotsuga and Tsuga. Most Arceuthobium spp. can parasitise more than one species of conifer host. Dwarf mistletoes could enter the EU via host plants for planting and cut branches, but these pathways are closed. They could establish in the EU, as hosts are widespread and climatic conditions are favourable. They would be able to spread following establishment by human movement of host plants for planting and cut branches, as well as natural spread. Should non-EU dwarf mistletoes be introduced in the EU, impacts can be expected on coniferous woodlands, plantations, ornamental trees and nurseries. The main uncertainties concern (i) the precise distribution and host range of the individual Arceuthobium spp. and (ii) the level of susceptibility of conifers native to Europe. For Arceuthobium spp. (non-EU) as a group of organisms, the criteria assessed by the Panel for consideration as a potential quarantine pest are met, while, for regulated non-quarantine pests, the criterion on the pest presence in the EU is not met.

20.
PLoS One ; 12(12): e0189585, 2017.
Article in English | MEDLINE | ID: mdl-29236789

ABSTRACT

Greasy spot of citrus, caused by Zasmidium citri-griseum (= Mycosphaerella citri), is widely distributed in the Caribbean Basin, inducing leaf spots, premature defoliation, and yield loss. Greasy spot-like symptoms were frequently observed in humid citrus-growing regions in Panama as well as in semi-arid areas in Spain, but disease aetiology was unknown. Citrus-growing areas in Panama and Spain were surveyed and isolates of Mycosphaerellaceae were obtained from citrus greasy spot lesions. A selection of isolates from Panama (n = 22) and Spain (n = 16) was assembled based on their geographical origin, citrus species, and affected tissue. The isolates were characterized based on multi-locus DNA (ITS and EF-1α) sequence analyses, morphology, growth at different temperatures, and independent pathogenicity tests on the citrus species most affected in each country. Reference isolates and sequences were also included in the analysis. Isolates from Panama were identified as Z. citri-griseum complex, and others from Spain attributed to Amycosphaerella africana. Isolates of the Z. citri-griseum complex had a significantly higher optimal growth temperature (26.8°C) than those of A. africana (19.3°C), which corresponded well with their actual biogeographical range. The isolates of the Z. citri-griseum complex from Panama induced typical greasy spot symptoms in 'Valencia' sweet orange plants and the inoculated fungi were reisolated. No symptoms were observed in plants of the 'Ortanique' tangor inoculated with A. africana. These results demonstrate the presence of citrus greasy spot, caused by Z. citri-griseum complex, in Panama whereas A. africana was associated with greasy spot-like symptoms in Spain.


Subject(s)
Ascomycota/pathogenicity , Citrus/microbiology , Panama , Spain
SELECTION OF CITATIONS
SEARCH DETAIL
...