Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Life Sci ; 328: 121906, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37394096

ABSTRACT

AIMS: Melatonin is known to inhibit platelet aggregation induced by arachidonic acid (AA). In the present study we investigated whether agomelatine (Ago), an antidepressant with agonist activity at melatonin receptor 1 (MT1) and MT2 could reduce platelets aggregation and adhesion. MAIN METHODS: Human platelets from healthy donors were used to test the in vitro effects of Ago in the presence of different platelet activators. We performed aggregation and adhesion assays, thromboxane B2 (TxB2), cAMP and cGMP measurements, intra-platelet calcium registration and flow cytometry assays. KEY FINDINGS: Our data revealed that different concentrations of Ago reduced AA- and collagen-induced human platelet aggregation in vitro. Ago also reduced AA-induced increase in thromboxane B2 (TxB2) production, intracellular calcium levels and P-selectin expression at plasma membrane. The effects of Ago in AA-activated platelets were likely dependent on MT1 as they were blocked by luzindole (a MT1/MT2 antagonist) and mimicked by the MT1 agonist UCM871 in a luzindole-sensitive manner. The MT2 agonist UCM924 was also able to inhibit platelet aggregation, but this response was not affected by luzindole. On the other hand, although UCM871 and UCM924 reduced collagen-induced platelet aggregation and adhesion, inhibition of collagen-induced platelet aggregation by Ago was not mediated by melatonin receptors because it was not affected by luzindole. SIGNIFICANCE: The present data show that Ago suppresses human platelet aggregation and suggest that this antidepressant may have the potential to prevent atherothrombotic ischemic events by reducing thrombus formation and vessel occlusion.


Subject(s)
Calcium , Platelet Aggregation , Humans , Receptors, Melatonin/metabolism , Calcium/metabolism , Blood Platelets/metabolism , Collagen/metabolism , Antidepressive Agents/pharmacology , Thromboxanes/metabolism , Thromboxane B2/metabolism , Thromboxane B2/pharmacology
2.
Plant Foods Hum Nutr ; 78(2): 342-350, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37120677

ABSTRACT

Hibiscus sabdariffa L. is a worldwide component for tea and beverages, being a natural source of anthocyanins, which are associated with cardiovascular activities. To investigate this relationship, we explored different methods of aqueous extraction on the anthocyanin content and antioxidant activity of H. sabdariffa L. calyx extract (HSCE). Pharmacological effects via platelet aggregation, calcium mobilization, cyclic nucleotide levels, vasodilator-stimulated phosphoprotein Ser157 and Ser239, and on the vasomotor response of aortic rings isolated from mice are studied herewith. We found that the application of ultrasonic turbolization, 20 min, combined with acidified water was significantly more effective in the extraction process, providing extracts with the highest levels of anthocyanins (8.73 and 9.63 mg/100 g) and higher antioxidant activity (6.66 and 6.78 µM trolox/g of sample). HSCE significantly inhibited (100-1000 µg/mL) arachidonic acid-induced platelet aggregation, reduced calcium mobilization, and increased cAMP and cGMP levels with VASPSer157 and VASPSer239 phosphorylation. Vasorelaxation reduction was confirmed by the aortic rings and endothelium assays treated with nitric oxide synthase inhibitors, soluble guanylyl cyclase (sGC) oxidizing agent, or Ca2+-activated K+ channel inhibitor. The increasing of cGMP levels could be understood considering the sGC stimulation by HSCE compounds in the specific stimulus domain, which allows an understanding of the observed antiplatelet and vasorelaxant properties of H. sabdariffa L. calyx extract.


Subject(s)
Hibiscus , Vasodilator Agents , Animals , Mice , Vasodilator Agents/pharmacology , Anthocyanins/pharmacology , Antioxidants/pharmacology , Calcium , Plant Extracts/pharmacology , Cyclic GMP/metabolism
3.
Biomed Pharmacother ; 141: 111807, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34120066

ABSTRACT

Agomelatine (AGO) is an antidepressant drug with agonistic activity at melatonin receptor 1 (MT1) and MT2 and with neutral antagonistic activity at serotonin receptor 5-HT2C. Although experimental studies show that melatonin reduces hypertriglyceridemia and hepatic steatosis induced by excessive fructose intake, no studies have tested if AGO exerts similar actions. To address this issue we have treated male Wistar rats with fructose (15% in the drinking water) and/or AGO (40 mg/kg/day) for two weeks. AGO reduced body weight gain, feeding efficiency and hepatic lipid levels without affecting caloric intake in fructose-treated rats. AGO has also decreased very low-density lipoprotein (VLDL) production and circulating TAG levels after an oral load with olive oil. Accordingly, treatment with AGO reduced the hepatic expression of fatty acid synthase (Fasn), a limiting step for hepatic de novo lipogenesis (DNLG). The expression of apolipoprotein B (Apob) and microsomal triglyceride transfer protein (Mttp) in the ileum, two crucial proteins for intestinal lipoprotein production, were also downregulated by treatment with AGO. Altogether, the present data show that AGO mimics the metabolic benefits of melatonin when used in fructose-treated rats. This study also suggests that it is relevant to evaluate the potential of AGO to treat metabolic disorders in future clinical trials.


Subject(s)
Acetamides/pharmacology , Fatty Liver/drug therapy , Fructose/pharmacology , Hypolipidemic Agents/pharmacology , Receptors, Melatonin/agonists , Triglycerides/pharmacology , Acetamides/therapeutic use , Animals , Apolipoproteins B/metabolism , Body Weight/drug effects , Carrier Proteins/metabolism , Energy Intake , Hypertriglyceridemia , Hypolipidemic Agents/therapeutic use , Lipid Metabolism/drug effects , Lipoproteins, VLDL/blood , Liver/drug effects , Liver/metabolism , Male , Melatonin/metabolism , Olive Oil/pharmacology , Rats , Rats, Wistar , Triglycerides/therapeutic use
4.
Life Sci ; 265: 118765, 2021 Jan 15.
Article in English | MEDLINE | ID: mdl-33189820

ABSTRACT

The progeny of rats born and breastfed by mothers receiving dexamethasone (DEX) during pregnancy exhibits permanent reduction in body weight and adiposity but the precise mechanisms related to this programming are not fully understood. In order to clarify this issue, the present study investigated key aspects of lipoprotein production and lipid metabolism by the liver and the intestine that would explain the reduced adiposity seen in the adult offspring exposed to DEX in utero. Female Wistar rats were treated with DEX (0.1 mg/kg/day) between the 15th and the 21st days of pregnancy, while control mothers were treated with vehicle. Male offspring born to control mothers were nursed by either adoptive control mothers (CTL/CTL) or DEX-treated mothers (CTL/DEX). Male offspring born to DEX-treated mothers were nursed by either control mothers (DEX/CTL) or adoptive DEX-treated mothers (DEX/DEX). We found that only the male DEX/DEX offspring had reduced adiposity. Additionally, male DEX/DEX progeny had lower circulating triacylglycerol (TAG) levels only in fed-state. The four groups of offspring presented similar energy expenditure, respiratory quotient and very low-density lipoprotein (VLDL) production. On the other hand, DEX/DEX rats displayed reduced TAG levels after gavage with olive oil and reduced expression of fatty acid translocase Cd36 (Fat/Cd36) and peroxisome proliferator-activated receptor γ (Pparg) in the jejunum. Altogether, our study supports the notion that reduced fat absorption by the jejunum may contribute to the lower adiposity of the adult offspring born and breastfed by mothers treated with DEX during pregnancy.


Subject(s)
CD36 Antigens/metabolism , Dexamethasone/pharmacology , Fatty Acids/metabolism , Jejunum/drug effects , PPAR gamma/metabolism , Prenatal Exposure Delayed Effects/chemically induced , Animals , Calorimetry, Indirect , Cholesterol/metabolism , Female , Gastrointestinal Transit/drug effects , Jejunum/metabolism , Male , Polymerase Chain Reaction , Pregnancy , Rats , Rats, Wistar , Triglycerides/metabolism
5.
Endocr Connect ; 9(4): 299-308, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32182583

ABSTRACT

PURPOSE: Observational studies show that longer breastfeeding periods reduce maternal risk of type 2 diabetes mellitus. However, it is currently unknown if the long-term benefits of breastfeeding for maternal glucose homeostasis are linked to changes in the endocrine pancreas. METHODS: We presently evaluated functional, morphological and molecular aspects of the endocrine pancreas of mice subjected to two sequential cycles of pregnancy and lactation (L21). Age-matched mice not allowed to breastfeed (L0) and virgin mice were used as controls. RESULTS: L21 mice exhibited increased tolerance and increased glucose-stimulated insulin secretion (GSIS) by isolated islets. Pancreatic islets of L21 mice did not present evident morphological changes to justify the increased GSIS. On the other hand, islets of L21 mice exhibited a reduction in Cavb3 and Kir6.2 expression with concordant increased intracellular Ca2+ levels after challenge with glucose. CONCLUSION: Altogether, the present findings show the breastfeeding exerts long-term benefits for maternal endocrine pancreas by increasing intracellular Ca2+ levels and GSIS.

6.
Life Sci ; 217: 261-270, 2019 Jan 15.
Article in English | MEDLINE | ID: mdl-30562489

ABSTRACT

AIMS: The present investigation evaluated whether pregnancy followed by lactation exerts long-term impacts on maternal hepatic lipid metabolism. MAIN METHODS: Female mice were subjected to two pregnancies, after which they were either allowed to breastfeed their pups for 21 days (L21) or had their litter removed (L0). Age-matched virgin mice were used as controls (CTL). Three months after the second delivery, serum was collected for lipid profiling, and fragments of liver were used to assess lipid content and to evaluate the key steps of de novo non-esterified fatty acid (NEFA) synthesis, esterification and ß-oxidation, very low density lipoprotein (VLDL) assembly and secretion and autophagy. KEY FINDINGS: L0 exhibited a significant increase in hepatic TG and reduced apolipoprotein B-100 (ApoB-100) expression. L21 mice had increased ATP citrate lyase (ACLY) activity and reduced acetyl-CoA carboxylase (ACC) phosphorylation but no increased hepatic TG. On the other hand, L21 mice had reduced hepatic sequestosome 1 (SQSTM1/p62) levels. Increased high density lipoprotein (HDL) cholesterol and hepatic apolipoprotein A-1 (ApoA-1) expression were found exclusively in L21. SIGNIFICANCE: The present study reveals that long-term hepatic lipid accumulation is induced by the history of pregnancy without lactation. On the other hand, reduced SQSTM1/p62 levels indicate that increased autophagic flux during life may prevent hepatic fat in dams subjected to lactation. Lactation after pregnancy is also obligatory for a long-term increase in maternal HDL. The present data may contribute to the understanding of the mechanisms leading to elevated cardiometabolic risk in women limited to short periods of lactation.


Subject(s)
Lactation , Lipid Metabolism , Liver/metabolism , Animals , Fatty Acids, Nonesterified/analysis , Fatty Acids, Nonesterified/metabolism , Female , Male , Mice , Mice, Inbred C57BL , Oxidation-Reduction , Pregnancy , Triglycerides/analysis , Triglycerides/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...