Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Ecol Evol ; 13(8): e10383, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37546570

ABSTRACT

The fan mussel Pinna nobilis is currently on the brink of extinction due to a multifactorial disease mainly caused to the highly pathogenic parasite Haplosporidium pinnae, meaning that the selection pressure outweighs the adaptive potential of the species. Hopefully, rare individuals have been observed somehow resistant to the parasite, stretching the need to identify the traits underlying this better fitness. Among the candidate to explore at first intention are fast-evolving immune genes, of which toll-like receptor (TLR). In this study, we examined the genetic diversity at 14 TLR loci across P. nobilis, Pinna rudis and P. nobilis × P. rudis hybrid genomes, collected at four physically distant regions, that were found to be either resistant or sensitive to the parasite H. pinnae. We report a high genetic diversity, mainly observed at cell surface TLRs compared with that of endosomal TLRs. However, the endosomal TLR-7 exhibited unexpected level of diversity and haplotype phylogeny. The lack of population structure, associated with a high genetic diversity and elevated dN/dS ratio, was interpreted as balancing selection, though both directional and purifying selection were detected. Interestingly, roughly 40% of the P. nobilis identified as resistant to H. pinnae were introgressed with P. rudis TLR. Specifically, they all carried a TLR-7 of P. rudis origin, whereas sensitive P. nobilis were not introgressed, at least at TLR loci. Small contributions of TLR-6 and TLR-4 single-nucleotide polymorphisms to the clustering of resistant and susceptible individuals could be detected, but their specific role in resistance remains highly speculative. This study provides new information on the diversity of TLR genes within the P. nobilis species after MME and additional insights into adaptation to H. pinnae that should contribute to the conservation of this Mediterranean endemic species.

2.
Micromachines (Basel) ; 13(9)2022 Sep 18.
Article in English | MEDLINE | ID: mdl-36144172

ABSTRACT

A non-invasive laser fiber-optic method based on infrared sensors for heart rate (Hr) recording was applied to assess the physiological condition of Pinna nobilis. During 2017, the specimens of P. nobilis were sampled at three sites within the Boka Kotorska Bay, Montenegro and used for ex situ experiments with short-term reduction/restoration of ambient salinity to evaluate their physiological adaptive capacity based on heart rate recovery time (Trec). Mean Trec for specimens from Sv. Nedjelja (reference site), Dobrota and Sv. Stasije were 72 ± 3, 91 ± 7 and 117 ± 15 min, while the coefficients of variation (CV) were 0.12, 0.13 and 0.17, respectively. Resting heart rate (Hrrest) and Trec showed statistically significant differences between the groups of mussels from Dobrota and Sv. Stasije in comparison to the reference site. Statistically significant correlations were observed between Trec and shell length/width, which was not the case in comparison between Hrrest and shell length/width. The lower adaptive capacity within the P. nobilis specimens from Dobrota and Sv. Stasije in comparison to the reference site could occur due to stress induced by deterioration of environmental conditions, which could have led to impairment of the physiological state of the mussels evaluated by Hr. All the specimens of P. nobilis survived the experimental treatments; afterwards, they were successfully transplanted at the Dobrota site. The experimental unit with sensor technology applied in this study can provide Hr recording in real time and could have an application in monitoring the physiological/health state of P. nobilis individuals maintained in aquaria.

3.
Sci Rep ; 9(1): 13355, 2019 09 16.
Article in English | MEDLINE | ID: mdl-31527825

ABSTRACT

A mass mortality event is devastating the populations of the endemic bivalve Pinna nobilis in the Mediterranean Sea from early autumn 2016. A newly described Haplosporidian endoparasite (Haplosporidium pinnae) is the most probable cause of this ecological catastrophe placing one of the largest bivalves of the world on the brink of extinction. As a pivotal step towards Pinna nobilis conservation, this contribution combines scientists and citizens' data to address the fast- and vast-dispersion and prevalence outbreaks of the pathogen. Therefore, the potential role of currents on parasite expansion was addressed by means of drift simulations of virtual particles in a high-resolution regional currents model. A generalized additive model was implemented to test if environmental factors could modulate the infection of Pinna nobilis populations. The results strongly suggest that the parasite has probably dispersed regionally by surface currents, and that the disease expression seems to be closely related to temperatures above 13.5 °C and to a salinity range between 36.5-39.7 psu. The most likely spread of the disease along the Mediterranean basin associated with scattered survival spots and very few survivors (potentially resistant individuals), point to a challenging scenario for conservation of the emblematic Pinna nobilis, which will require fast and strategic management measures and should make use of the essential role citizen science projects can play.


Subject(s)
Bivalvia/parasitology , Disease Outbreaks/veterinary , Haplosporida/growth & development , Protozoan Infections, Animal/epidemiology , Animals , Ecosystem , Environment , Haplosporida/classification , Mediterranean Sea/epidemiology , Phylogeny , Protozoan Infections, Animal/parasitology , Salinity , Temperature
4.
Adv Mar Biol ; 71: 109-60, 2015.
Article in English | MEDLINE | ID: mdl-26320617

ABSTRACT

The pen shell Pinna nobilis (also known as the fan mussel) is an endemic bivalve of the Mediterranean Sea. Threatened by human activities, it has been listed as an endangered and protected species under the European Council Directive 92/43/EEC since 1992. The ecological role of this species is of importance because it filters and retains large amounts of organic matter from suspended detritus contributing to water clarity. In addition, as a hard substrate in the soft-bottom seafloor, it provides a surface that can be colonized by other (floral and faunal) benthic species. Here, we provide an overview of all available published studies on the pen shell, compiling available data and summarizing current knowledge on the conservation status and viability of populations over the full range of the Mediterranean Basin. Additionally, we discuss the different practices in applied methodology and identify gaps and new research areas in order to render conservation programmes of the species more effective.


Subject(s)
Conservation of Natural Resources , Mollusca/physiology , Animals , Mediterranean Sea , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...