Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Commun (Camb) ; 59(83): 12475-12478, 2023 Oct 17.
Article in English | MEDLINE | ID: mdl-37782483

ABSTRACT

The highly selective hydrogenation of CO2 to methanol has been achieved through the simultaneous utilization of alkali metals and Co as promoters over Cu-Zn@CN catalysts derived from MOF. Rb facilitates the dissociation of CO2 in the aqueous phase at relatively mild conditions to yield methanol with a selectivity of 89%.

2.
Phys Chem Chem Phys ; 23(31): 16795-16805, 2021 Aug 12.
Article in English | MEDLINE | ID: mdl-34323251

ABSTRACT

Organic/inorganic van der Waals heterojunctions formed by a combination of 2D materials with semiconductor polymer films enable the fabrication of new device architectures that are interesting for electronic and optoelectronic applications. Here, we investigated the charge-transfer dynamics at the interface between 2D layered franckeite (Fr) and two thiophene-based conjugated polymers (PFO-DBT and P3HT) from the resonantly core-excited electron. The unoccupied electronic states of PFO-DBT/Fr and P3HT/Fr heterojunctions were studied using near-edge X-ray absorption fine structure (NEXAFS) and resonant Auger (RAS) synchrotron-based spectroscopies. We found evidence of ultrafast (subfemtosecond charge-transfer times) interfacial electron delocalization pathways from specific electronic states. For the interface between the PFO-DBT polymer and exfoliated franckeite, the most efficient interfacial electron delocalization pathways were found through π*(S-N) and π*(S-C) electronic states corresponding to the benzothiadiazole and thiophene units. On the other hand, for the P3HT polymer, we found that electrons excited to π-π* and S1s-π*(C-C) electronic states of the P3HT polymer are the most affected by the presence of exfoliated franckeite and consequently are the main interfacial electron-transfer pathways in this heterojunction. Our results have important implications in understanding how ultrafast electron delocalization is taking place in organic/inorganic van der Waals heterojunctions, which is relevant information in designing new devices involving these systems.

3.
Phys Chem Chem Phys ; 21(42): 23521-23532, 2019 Nov 14.
Article in English | MEDLINE | ID: mdl-31617508

ABSTRACT

Hybrid van der Waals heterojunctions based on organic polymers and 2D materials have emerged as a promising solution for developing more efficient optoelectronic devices. Herein, we investigated the charge transfer (CT) dynamics at the interface of the poly[3-hexylthiophene-2,5-diyl] (P3HT) organic polymer and a MoS2 monolayer. A global picture of the charge transfer dynamics of a P3HT/MoS2/SiO2 heterojunction was elucidated from photoluminescence (PL) spectroscopy and the fluorescence lifetime decay profile. Rapid interfacial charge transfer between P3HT and MoS2 was indicated by strong PL quenching and a reduction in the average fluorescence lifetime (τav) of the P3HT/MoS2/SiO2 heterojunction. The role of specific electronic states in the interfacial CT process was investigated by applying the core hole clock approach. CT times (τCT) on femtosecond and sub-femtosecond timescales were estimated using the S1s core-hole lifetime as the internal clock. Sub-femtosecond CT was observed for electrons excited to S3pz (0.34 fs) electronic states of MoS2 and to π* (C-C) (0.45 fs) electronic states of P3HT in the P3HT/MoS2/SiO2 heterojunction. These fast bidirectional CT processes result from strong coupling between these two electronic states in the P3HT/MoS2/SiO2 heterostructure. However, the reduction of the τCT values in the heterojunction compared with those of the isolated films shows that interfacial CT from the P3HT species to MoS2 is more efficient. Interfacial CT was not observed for electrons excited to electronic states S3px,y (MoS2) and σ* (S-C) (P3HT). We conclude that the π* (C-C) electronic state of the P3HT species is the main pathway for interfacial ultrafast CT in a P3HT/MoS2/SiO2 heterojunction.

4.
Nanotechnology ; 30(47): 475707, 2019 Nov 22.
Article in English | MEDLINE | ID: mdl-31426043

ABSTRACT

In this work a simple approach to transform MoS2 from its metallic (1T' to semiconductor 2H) character via gold nanoparticle surface decoration of a MoS2 reduced graphene oxide (rGO) nanocomposite is proposed. The possible mechanism to this phase transformation was investigated using different spectroscopy techniques, and supported by density functional theory theoretical calculations. A mixture of the 1T'- and 2H-MoS2 phases was observed from the Raman and Mo 3d high resolution x-ray photoelectron spectra analysis in the MoS2-rGO nanocomposite. After surface decoration with gold nanoparticles the concentration of the 1T' phase decreases making evident a phase transformation. According to Raman and valence band spectra analyzes, the Au nanoparticles (NPs) induce a p-type doping in MoS2-rGO nanocomposite. We proposed as a main mechanism to the MoS2 phase transformation the electron transfer from Mo 4d xy,xz,yz in 1T' phase to AuNPs conduction band. At the same time, the unoccupied electronic structure was investigated from S K-edge near edge x-ray absorption fine structure spectroscopy. Finally, the electronic coupling between unoccupied electronic states was investigated by the core hole clock approach using resonant Auger spectroscopy, showing that AuNPs affect mainly the MoS2 electronic states close to Fermi level.

5.
Phys Chem Chem Phys ; 19(44): 29954-29962, 2017 Nov 15.
Article in English | MEDLINE | ID: mdl-29090284

ABSTRACT

Two-dimensional van der Waals heterostructures are attractive candidates for optoelectronic nanodevice applications. The charge transport process in these systems has been extensively investigated, however the effect of coupling between specific electronic states on the charge transfer process is not completely established yet. Here, interfacial charge transfer (CT) in the MoS2/graphene/SiO2 heterostructure is investigated from static and dynamic points of view. Static CT in the MoS2-graphene interface was elucidated by an intensity quenching, broadening and a blueshift of the photoluminescence peaks. Atomic and electronic state-specific CT dynamics on a femtosecond timescale are characterized using a core-hole clock approach and using the S1s core-hole lifetime as an internal clock. We demonstrate that the femtosecond electron transfer pathway in the MoS2/SiO2 heterostructure is mainly due to the electronic coupling between S3p-Mo4d states forming the Mo-S covalent bond in the MoS2 layer. For the MoS2/graphene/SiO2 heterostructure, we identify, with the support of density functional calculations, new pathways that arise due to the high density of empty electronic states of the graphene conduction band. The latter makes the transfer process time in the MoS2/graphene/SiO2/Si twice as fast as in the MoS2/SiO2/Si sample. Our results show that ultrafast electron delocalization pathways in van der Waals heterostructures are dependent on the electronic properties of each involved 2D material, creating opportunities to modulate their transport properties.

6.
Eur Biophys J ; 39(6): 959-70, 2010 May.
Article in English | MEDLINE | ID: mdl-19471920

ABSTRACT

Neuromelanin is a complex molecule accumulating in the catecholaminergic neurons that undergo a degenerative process in Parkinson's disease. It has been shown to play either a protective or a toxic role depending on whether it is present in the intraneuronal or extraneuronal milieu. Understanding its structure and synthesis mechanisms is mandatory to clarify the reason for this remarkable dual behavior. In the present study, X-ray absorption spectroscopy is employed to investigate the sulfur binding mode in natural human neuromelanin, synthetic neuromelanins, and in certain structurally known model compounds, namely cysteine and decarboxytrichochrome C. Based on comparative fits of human and synthetic neuromelanin spectra in terms of those of model compounds, the occurrence of both cysteine- and trichochrome-like sulfur coordination modes is recognized, and the relative abundance of these two types of structural arrangement is determined. Data on the amount of cysteine- and trichochrome-like sulfur measured in this way indicate that among the synthetic neuromelanins those produced by enzymatic oxidation are the most similar ones to natural neuromelanin. The interest of the method described here lies in the fact that it allows the identification of different sulfur coordination environments in a physically nondestructive way.


Subject(s)
Melanins/chemistry , Parkinson Disease/pathology , Sulfur/chemistry , X-Ray Absorption Spectroscopy/methods , Cell Count , Humans , Male , Melanins/pharmacology , Neurons/drug effects , Neurons/radiation effects , Sulfur/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...