Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Talanta ; 222: 121539, 2021 Jan 15.
Article in English | MEDLINE | ID: mdl-33167247

ABSTRACT

The present study reports the development of graphite pencil electrode modified with palladium nanoparticles (PdNPs) and its application as an electrochemical sensor for the simultaneous detection of direct yellow 50, tryptophan, carbendazim and caffeine in river water and synthetic urine samples. The combination involving the conductive surface of the graphite pencil electrode (GPE) and the enlargement of the surface area caused by the use of palladium nanoparticles (PdNPs) led to the improvement of the analytical performance of the proposed device. The surface of the GPE-PdNPs was characterized by scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). The charge transfer kinetics of the electrode was evaluated based on the electrochemical analysis of the potassium ferricyanide redox probe. Using square wave voltammetry (SWV), well-defined and fully resolved anodic peaks were detected for the analytes, with peak-to-peak potential separation not less than 200 mV. Under optimised conditions, the following linear range concentrations were obtained: 0.99-9.9 µmol L-1 for direct yellow 50; 1.2-12 µmol L-1 for tryptophan; 0.20-1.6 µmol L-1 for carbendazim; and 25-190 µmol L-1 for caffeine. The sensor showed good sensitivity, repeatability, and stability. The device was successfully applied for the determination of analytes in urine and river water samples, where recovery rates close to 100% were obtained. Due to its low cost and reusability by simple polishing, the sensor has strong potential to be used as an electrochemical sensor for the determination of different analytes.


Subject(s)
Graphite , Metal Nanoparticles , Azo Compounds , Benzimidazoles , Caffeine , Carbamates , Electrochemical Techniques , Electrodes , Naphthalenes , Palladium , Tryptophan
2.
J Mol Model ; 26(11): 309, 2020 Oct 21.
Article in English | MEDLINE | ID: mdl-33084954

ABSTRACT

In this work, we present a computational investigation on the photoexcitation of indigo carmine (IC). Physical insights regarding IC photoexcitation and photolysis were obtained from a fundamental perspective through quantum chemistry computations. Density functional theory (DFT) was used to investigate the ground state while its time-dependent formalism (TD-DFT) was used for probing excited state properties, such as vertical excitation energies, generalized oscillator strengths (GOS), and structures. All the computations were undertaken using two different approaches: M06-2X/6-311+G(d,p) and CAM-B3LYP/6-311+G(d,p), in water. Results determined using both methods are in systematic agreement. For instance, the first singlet excited state was found at 2.28 eV (with GOS = 0.4730) and 2.19 eV (GOS = 0.4695) at the TD-DFT/CAM-B3LYP/6-311+G(d,p) and TD-DFT/M06-2X/6-311+G(d,p) levels of theory, respectively. Excellent agreement was observed between the computed and the corresponding experimental UV-Vis spectra. Moreover, results suggest IC undergoes photodecomposition through excited state chemical reaction rather than via a direct photolysis path. To the best of our knowledge, this work is the first to tackle the photoexcitation, and its potential connections to photodegradation, of IC from a fundamental chemical perspective, being presented with expectations to motivate further studies.

3.
Mikrochim Acta ; 186(3): 174, 2019 02 15.
Article in English | MEDLINE | ID: mdl-30771008

ABSTRACT

A carbon paste electrode (CPE) was modified with graphite oxide (GrO) and ß-cyclodextrin (CD) to obtain a sensor for simultaneous voltammetric determination of levodopa (LD), piroxicam (PRX), ofloxacin (OFX) and methocarbamol (MCB). The morphology, structure and electrochemical properties of the functionalized GrO were characterized by scanning electron microscopy, energy-dispersive X-ray spectroscopy, contact angle measurements and cyclic voltammetry. Under the optimal experimental conditions, the sensor is capable of detecting LD, PRX, OFX and MCB by square wave voltammetry (SWV) at working potentials of +0.40, +0.60, +1.03 and + 1.27 V (versus Ag/AgCl), respectively. Response is linear from 1.0 to 20 µM for LD, from 1.0 to 15 µM for PRX, from 1.0 to 20 µM for OFX, and from 1.0 to 50 µM for MCB. The respective limits of detection are 65, 105, 89 and 400 nM. The method was successfully applied to the simultaneous determination of LD, PRX, OFX and MCB in (spiked) real river water and synthetic urine samples, and the results were in agreement with those obtained using a spectrophotometric method, with recoveries close to 100%. Graphical abstract Schematic presentation of a novel electroanalytical method employing a carbon paste electrode modified with graphite oxide and ß-cyclodextrin for the simultaneous determination of levodopa, piroxicam, ofloxacin and methocarbamol in urine and river water samples by square wave voltammetry.


Subject(s)
Graphite/chemistry , Levodopa/urine , Methocarbamol/urine , Ofloxacin/urine , Piroxicam/urine , beta-Cyclodextrins/chemistry , Electrochemical Techniques/methods , Electrodes , Levodopa/chemistry , Limit of Detection , Methocarbamol/chemistry , Ofloxacin/chemistry , Oxides/chemistry , Piroxicam/chemistry , Reproducibility of Results , Rivers/chemistry
4.
Enzyme Microb Technol ; 116: 41-47, 2018 Sep.
Article in English | MEDLINE | ID: mdl-29887015

ABSTRACT

Carbon Black (CB) has acquired a prominent position as a carbon nanomaterial for the development of electrochemical sensors and biosensors due to its low price and extraordinary electrochemical and physical properties. These properties are highly dependent on the surface chemistry and thus, the effect of functionalization has been widely studied for different applications. Meanwhile, the influence of CB functionalization over its properties for electroanalytical applications is still being poorly explored. In this study, we describe the use of chemically functionalized CB Vulcan XC 72R for the development of sensitive electrochemical biosensors. The chemical pre-treatment increased the material wettability by raising the concentration of surface oxygenated functional groups verified from elemental analysis and FTIR measurements. In addition, it was observed an enhancement of almost 100-fold on the electron transfer rate constant (k0) related to unfunctionalized CB, confirming a remarkable improvement of the electrocatalytic properties. Finally, we constructed a Tyrosinase (Tyr) biosensor based on functionalized CB and dihexadecylphosphate (DHP) for the determination of catechol in water samples. The resulting device displayed an excellent stability with a limit of detection of 8.7 × 10-8 mol L-1 and a sensitivity of 539 mA mol-1 L. Our results demonstrate that functionalized CB provides an excellent platform for biosensors development.


Subject(s)
Biosensing Techniques/methods , Carbon/chemistry , Catechols/analysis , Monophenol Monooxygenase/chemistry , Organophosphates/chemistry , Soot/chemistry , Water Pollutants, Chemical/analysis , Biosensing Techniques/instrumentation , Electrochemistry , Electrodes , Enzymes, Immobilized/chemistry , Limit of Detection
5.
Biosens Bioelectron ; 89(Pt 1): 224-233, 2017 Mar 15.
Article in English | MEDLINE | ID: mdl-27005454

ABSTRACT

Advances in analysis are required for rapid and reliable clinical diagnosis. Graphene is a 2D material that has been extensively used in the development of devices for the medical proposes due to properties such as an elevated surface area and excellent electrical conductivity. On the other hand, architectures have been designed with the incorporation of different biological recognition elements such as antibodies/antigens and DNA probes for the proposition of immunosensors and genosensors. This field presents a great progress in the last few years, which have opened up a wide range of applications. Here, we highlight a rather comprehensive overview of the interesting properties of graphene for in vitro, in vivo, and point-of-care electrochemical biosensing. In the course of the paper, we first introduce graphene, electroanalytical methods (potentiometry, voltammetry, amperometry and electrochemical impedance spectroscopy) followed by an overview of the prospects and possible applications of this material in electrochemical biosensors. In this context, we discuss some relevant trends including the monitoring of multiple biomarkers for cancer diagnostic, implantable devices for in vivo sensing and, development of point-of-care devices to real-time diagnostics.


Subject(s)
Biosensing Techniques/methods , Electrochemical Techniques/methods , Graphite/chemistry , Nanostructures/chemistry , Point-of-Care Systems , Animals , Biomarkers/analysis , Biosensing Techniques/instrumentation , Electrochemical Techniques/instrumentation , Equipment Design , Humans , Models, Molecular , Nanostructures/ultrastructure , Neoplasms/diagnosis
6.
Talanta ; 161: 333-341, 2016 Dec 01.
Article in English | MEDLINE | ID: mdl-27769415

ABSTRACT

New insights into the design of highly sensitive, carbon-based electrochemical sensors are presented in this work by exploring the interesting properties of graphene oxide (GO) and ionic liquids (ILs). An electrochemical sensor based on the carbon paste electrode (CPE) modified with GO and IL was developed for the sensitive detection of ofloxacin using square-wave adsorptive anodic stripping voltammetry (SWAdASV). GO sheets were obtained from the acid treatment of graphene and characterized by scanning and transmission electronic microscopy (SEM and TEM) and selected area electron diffraction (SAED), and the electrochemical behavior of the modified GO-IL/CPE was explored by electrochemical impedance spectroscopy studies. The CPE modification with GO and IL allowed an 8.2 fold increase in the analytical sensitivity for ofloxacin sensing compared to the unmodified CPE. Under the optimized experimental conditions using the SWAdASV technique, the GO-IL/CPE sensor provided an analytical curve for ofloxacin in the concentration range of 7.0×10-9 to 7.0×10-7molL-1, with a sensitivity of 7.7×106µALmol-1 and limit of detection of 2.8×10-10molL-1 (0.28nmolL-1). The proposed sensor was successfully applied for the ofloxacin determination in human urine and ophthalmic samples, with recoveries near 100%. The results were similar those obtained by a spectrophotometric comparative method.

7.
Mater Sci Eng C Mater Biol Appl ; 58: 97-102, 2016 Jan 01.
Article in English | MEDLINE | ID: mdl-26478291

ABSTRACT

A new architecture for a biosensor is proposed using a glassy carbon electrode (GCE) modified with hemoglobin (Hb) and silver nanoparticles (AgNPs) encapsulated in poly(amidoamine) dendrimer (PAMAM). The biosensors were characterized using ultraviolet-visible spectroscopy, ζ-potential and cyclic voltammetry to investigate the interactions between Hb, AgNPs and the PAMAM film. The biosensor exhibited a well-defined cathodic peak attributed to reduction of the Fe(3+) present in the heme group in Hb, as revealed by cyclic voltammetry in the presence of O2. An apparent heterogeneous electron transfer rate of 4.1s(-1) was obtained. The Hb-AgNPs-PAMAM/GCE third generation biosensor was applied in the amperometric determination of hydrogen peroxide over the linear range from 6.0 × 10(-6) to 9.1 × 10(-5)mol L(-1) with a detection limit of 4.9 × 1 0(-6)mol L(-1). The proposed method can be extended to immobilize and evaluate the direct electron transfer of other redox enzymes.


Subject(s)
Biosensing Techniques/methods , Hemoglobins/chemistry , Hydrogen Peroxide/analysis , Metal Nanoparticles/chemistry , Polyamines/chemistry , Silver/chemistry , Electrochemical Techniques , Humans , Hydrogen Peroxide/blood , Limit of Detection , Linear Models
8.
Analyst ; 139(16): 3961-7, 2014 Aug 21.
Article in English | MEDLINE | ID: mdl-24919542

ABSTRACT

Voltammetric studies have been carried out using a glassy carbon electrode (GCE) modified with multi-walled carbon nanotubes (MWCNTs) and the ionic liquid 1-butyl-3-methylimidazolium chloride (IL). Studies on the electrochemical properties of GCEs modified with MWCNTs and IL within different polymeric films (dihexadecylphosphate (DHP), Nafion, and chitosan (CTS)) were performed using a [Fe(CN)6](4-/3-) electrochemical probe. The modified GCE with different polymeric films was also tested for ciprofibrate (CPF) sensing in the presence and absence of IL in the film. The presence of IL and the MWCNTs improved the electrochemical response for CPF in all cases due to a synergic effect, and the IL-MWCNTs-DHP/GCE showed a great voltammetric profile for CPF detection. The IL-MWCNTs-DHP/GCE and differential pulse voltammetry (DPV) were used for the determination of CPF. An analytical curve was obtained for CPF in the concentration range of 2.50 × 10(-7) to 7.41 × 10(-6) mol L(-1) with a detection limit of 9.20 × 10(-8) mol L(-1). The proposed DPV method was successfully applied for CPF determination in pharmaceutical samples, and the results obtained agree with the results obtained using a spectrophotometric method at a confidence level of 95%.

9.
Analyst ; 139(11): 2832-41, 2014 Jun 07.
Article in English | MEDLINE | ID: mdl-24752746

ABSTRACT

A novel vertically aligned carbon nanotube/graphene oxide (VACNT-GO) electrode is proposed, and its ability to determine atorvastatin calcium (ATOR) in pharmaceutical and biological samples by differential pulse adsorptive stripping voltammetry (DPAdSV) is evaluated. VACNT films were prepared on a Ti substrate by a microwave plasma chemical vapour deposition method and then treated with oxygen plasma to produce the VACNT-GO electrode. The oxygen plasma treatment exfoliates the carbon nanotube tips exposing graphene foils and inserting oxygen functional groups, these effects improved the VACNT wettability (super-hydrophobic) which is crucial for its electrochemical application. The electrochemical behaviour of ATOR on the VACNT-GO electrode was studied by cyclic voltammetry, which showed that it underwent an irreversible oxidation process at a potential of +1.08 V in pHcond 2.0 (0.2 mol L(-1) buffer phosphate solution). By applying DPAdSV under optimized experimental conditions the analytical curve was found to be linear in the ATOR concentration range of 90 to 3.81 × 10(3) nmol L(-1) with a limit of detection of 9.4 nmol L(-1). The proposed DPAdSV method was successfully applied in the determination of ATOR in pharmaceutical and biological samples, and the results were in close agreement with those obtained by a comparative spectrophotometric method at a confidence level of 95%.


Subject(s)
Electrodes , Graphite/chemistry , Heptanoic Acids/analysis , Nanotubes, Carbon , Pyrroles/analysis , Adsorption , Atorvastatin , Hydrogen-Ion Concentration , Kinetics , Limit of Detection , Microscopy, Electron, Scanning , Oxides/chemistry , Pharmaceutical Preparations/chemistry
10.
Braz. j. pharm. sci ; 48(2): 325-333, Apr.-June 2012. ilus, graf, tab
Article in English | LILACS | ID: lil-643025

ABSTRACT

A simple flow-injection analysis procedure was developed for determining captopril in pharmaceutical formulations employing a novel solid-phase reactor containing silver thiocyanate immobilized in a castor oil derivative polyurethane resin. The method was based on silver mercaptide formation between the captopril and Ag(I) in the solid-phase reactor. During such a reaction, the SCN- anion was released and reacted with Fe3+, which generated the FeSCN2+ complex that was continuously monitored at 480 nm. The analytical curve was linear in the captopril concentration range from 3.0 × 10-4 mol L-1 to 1.1 × 10-3 mol L-1 with a detection limit of 8.0 × 10-5 mol L-1. Recoveries between 97.5% and 103% and a relative standard deviation of 2% for a solution containing 6.0 × 10-4 mol L-1 captopril (n = 12) were obtained. The sample throughput was 40 h-1 and the results obtained for captopril in pharmaceutical formulations using this procedure and those obtained using a pharmacopoeia procedure were in agreement at a 95% confidence level.


Um procedimento simples de análise por injeção em fluxo foi desenvolvido para a determinação de captopril em formulações farmacêuticas empregando um novo reator em fase sólida contendo tiocianato de prata imobilizado em resina poliuretana obtida a partir de óleo de mamona. O método foi baseado na formação de um mercapto composto de prata, no reator em fase sólida, obtido entre o captopril e Ag (I) imobilizada. Durante a reação, íons SCN- eram liberados e reagiam com Fe3+, gerando o complexo FeSCN2+, que foi continuamente monitorado em 480 nm. A curva analítica foi linear no intervalo de concentração de captopril entre 3,0 × 10-4 a 1,1 × 10-3 mol L-1 com um limite de detecção de 8,0 × 10-5 mol L-1. Recuperações entre 97,5-103% e desvio padrão relativo de 2% para uma solução contendo 6,0 × 10-4 mol L-1 de captopril (n = 12) foram obtidos. A frequência de amostragem foi de 40 h-1 e os resultados obtidos para captopril em formulações farmacêuticas utilizando este procedimento e o da Farmacopeia, estão de acordo em um nível de confiança de 95%.


Subject(s)
Captopril/pharmacokinetics , Chemistry, Pharmaceutical/classification , Flow Injection Analysis , Polyurethanes/classification
11.
Talanta ; 87: 235-42, 2011 Dec 15.
Article in English | MEDLINE | ID: mdl-22099673

ABSTRACT

The modification of a glassy carbon electrode with multi-walled carbon nanotubes and gold nanoparticles within a poly(allylamine hydrochloride) film for the development of a biosensor is proposed. This approach provides an efficient method used to immobilize polyphenol oxidase (PPO) obtained from the crude extract of sweet potato (Ipomoea batatas (L.) Lam.). The principle of the analytical method is based on the inhibitory effect of sulfite on the activity of PPO, in the reduction reaction of o-quinone to catechol and/or the reaction of o-quinone with sulfite. Under the optimum experimental conditions using the differential pulse voltammetry technique, the analytical curve obtained was linear in the concentration of sulfite in the range from 0.5 to 22 µmol L(-1) with a detection limit of 0.4 µmol L(-1). The biosensor was applied for the determination of sulfite in white and red wine samples with results in close agreement with those results obtained using a reference iodometric method (at a 95% confidence level).


Subject(s)
Biosensing Techniques/instrumentation , Nanoparticles/chemistry , Nanotubes, Carbon/chemistry , Polyamines/chemistry , Sulfites/analysis , Wine/analysis , Catechol Oxidase/chemistry , Catechol Oxidase/metabolism , Electrodes , Enzymes, Immobilized/chemistry , Enzymes, Immobilized/metabolism , Gold/chemistry , Ipomoea batatas/enzymology , Limit of Detection , Sulfites/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...