Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Nanoscale Adv ; 6(6): 1739-1749, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38482031

ABSTRACT

Treatment planning in magnetic hyperthermia requires a thorough knowledge of specific loss power of magnetic nanoparticles as a function of size and excitation conditions. Moreover, in biological tissues the magnetic nanoparticles can aggregate into clusters, making the evaluation of their heating performance more challenging because of the magnetostatic dipole-dipole interactions. In this paper, we present a comprehensive modelling analysis of 10-40 nm sized spherical magnetite (Fe3O4) nanoparticles, investigating how their heating properties are influenced by magnetic field parameters (peak amplitude and frequency), and by volume concentration and aggregation state. The analysis is performed by means of an in-house micromagnetic numerical model, which solves the Landau-Lifshitz-Gilbert equation under the assumption of single-domain nanoparticles, including thermal effects via a Langevin approach. The obtained results provide insight into how to tune hyperthermia properties by varying magnetic nanoparticle size, under different excitation magnetic fields fulfilling the Hergt-Dutz limit (frequency between 50 kHz and 1 MHz, and peak amplitude between 1 kA m-1 and 50 kA m-1). Special attention is finally paid to the role of volume concentration and aggregation order, putting in evidence the need for models able to account for stochasticity and clustering in spatial distribution, to accurately simulate the contribution of magnetostatic dipole-dipole interactions in real applications.

2.
Nanoscale ; 16(4): 1711-1723, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38087911

ABSTRACT

Magnetic oxygen-loaded nanodroplets (MOLNDs) are a promising class of nanomaterials dually sensitive to ultrasound and magnetic fields, which can be employed as nanovectors for drug delivery applications, particularly in the field of hypoxic tissue treatment. Previous investigations were primarily focused on the application of these hybrid systems for hyperthermia treatment, exploiting magnetic nanoparticles for heat generation and nanodroplets as carriers and ultrasound contrast agents for treatment progress monitoring. This work places its emphasis on the prospect of obtaining an oxygen delivery system that can be activated by both ultrasound and magnetic fields. To achieve this goal, Fe3O4 nanoparticles were employed to decorate and induce the magnetic vaporization of OLNDs, allowing oxygen release. We present an optimized method for preparing MOLNDs by decorating nanodroplets made of diverse fluorocarbon cores and polymeric coatings. Furthermore, we performed a series of characterizations for better understanding how magnetic decoration can influence the physicochemical properties of OLNDs. Our comprehensive analysis demonstrates the efficacy of magnetic stimulation in promoting oxygen release compared to conventional ultrasound-based methods. We emphasize the critical role of selecting the appropriate fluorocarbon core and polymeric coating to optimize the decoration process and enhance the oxygen release performance of MOLNDs.


Subject(s)
Fluorocarbons , Nanoparticles , Oxygen , Drug Delivery Systems , Ultrasonography , Nanoparticles/chemistry , Polymers , Fluorocarbons/chemistry , Magnetic Phenomena
3.
Nanomaterials (Basel) ; 12(19)2022 Sep 21.
Article in English | MEDLINE | ID: mdl-36234407

ABSTRACT

This paper aims at studying a sensor concept for possible integration in magnetic field-based lab-on-chip devices that exploit ferromagnetic resonance (FMR) phenomena in magnonic crystals. The focus is on 2D magnetic antidot arrays, i.e., magnetic thin films with periodic non-magnetic inclusions (holes), recently proposed as magnetic field sensor elements operating in the gigahertz (GHz) range. The sensing mechanism is here demonstrated for magnetic nano/microbeads adsorbed on the surface of permalloy (Ni80Fe20) antidot arrays with a rhomboid lattice structure and variable hole size. Through extensive micromagnetic modelling analysis, it is shown that the antidot arrays can be used as both bead traps and high-sensitivity detectors, with performance that can be tuned as a function of bead size and magnetic moment. A key parameter for the detection mechanism is the antidot array hole size, which affects the FMR frequency shifts associated with the interaction between the magnetization configuration in the nanostructured film and the bead stray field. Possible applications of the proposed device concept include magnetic immunoassays, using magnetic nano/microbeads as probes for biomarker detection, and biomaterial manipulation.

4.
Comput Methods Programs Biomed ; 223: 106975, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35792363

ABSTRACT

BACKGROUND AND OBJECTIVE: Magnetic hyperthermia is an oncological therapy that employs magnetic nanoparticles activated by alternating current (AC) magnetic fields with frequencies between 50 kHz and 1 MHz, to release heat in a diseased tissue and produce a local temperature increase of about 5 °C. To assess the treatment efficacy, in vivo tests on murine models (mice and rats) are typically performed. However, these are often carried out without satisfying the biophysical constraints on the electromagnetic (EM) field exposure, with consequent generation of hot spots and undesirable heating of healthy tissues. Here, we investigate possible adverse eddy current effects, to estimate AC magnetic field parameters (frequency and amplitude) that can potentially guarantee safe animal tests of magnetic hyperthermia. METHODS: The analysis is performed through in silico modelling by means of finite element simulation tools, specifically developed to study eddy current effects in computational animal models, during magnetic hyperthermia treatments. The numerical tools enable us to locally evaluate the specific absorption rate (SAR) and the produced temperature increase, under different field exposure conditions. RESULTS: The simulation outcomes demonstrate that in mice with weight lower than 30 g the thermal effects induced by AC magnetic fields are very weak, also when slightly overcoming the Hergt-Dutz limit, that is the product of the magnetic field amplitude and frequency should be lower than 5·109 A/(m·s). Conversely, we observe significant temperature increases in 500 g rats, amplified when the field is applied transversally to the body longitudinal axis. A strong mitigation of side-effects can be achieved by introducing water boluses or by applying focused fields. CONCLUSIONS: The developed physics-based modelling approach has proved to be a useful predictive tool for the optimization of preclinical tests of magnetic hyperthermia, allowing the identification of proper EM field conditions and the design of setups that guarantee safe levels of field exposure during animal treatments. In such contest, the obtained results can be considered as valid indicators to assess reference levels for animal testing of biomedical techniques that involve EM fields, like magnetic hyperthermia, thus complying with the Directive 2010/63/EU on the protection of animals used for scientific purposes.


Subject(s)
Drug-Related Side Effects and Adverse Reactions , Hyperthermia, Induced , Animals , Electromagnetic Fields , Hot Temperature , Hyperthermia, Induced/methods , Magnetic Fields , Magnetics , Mice , Rats
5.
Vaccines (Basel) ; 9(11)2021 Oct 22.
Article in English | MEDLINE | ID: mdl-34835163

ABSTRACT

Immunization through vaccination is a milestone achievement that has made a tremendous contribution to public health. Historically, immunization programs aimed firstly to protect children, who were disproportionally affected by infectious diseases. However, vaccine-preventable diseases can have significant impacts on adult mortality, health, and quality of life. Despite this, adult vaccinations have historically been overlooked in favor of other health priorities, because their benefits to society were not well recognized. As the general population is aging, the issue of vaccination in older adults is gaining importance. In high-income countries, recommendations for the routine vaccination of older adults have been gradually introduced. The Italian National Immunization Plan is considered to be among the most advanced adult vaccination plans in Europe. However, available data indicate there is low adherence to vaccination recommendations in Italy. The COVID-19 pandemic has exposed the damage that can be caused by an infectious disease, especially among adults and individuals with comorbidities. The aim of this "Manifesto", therefore, is to provide an overview of the existing evidence on the value of adult vaccination, in the Italian context, with a call to action to healthcare providers and health authorities.

6.
Nanomaterials (Basel) ; 11(9)2021 Aug 25.
Article in English | MEDLINE | ID: mdl-34578497

ABSTRACT

The ability of magnetic nanoparticles (MNPs) to transform electromagnetic energy into heat is widely exploited in well-known thermal cancer therapies, such as magnetic hyperthermia, which proves useful in enhancing the radio- and chemo-sensitivity of human tumor cells. Since the heat release is ruled by the complex magnetic behavior of MNPs, a careful investigation is needed to understand the role of their intrinsic (composition, size and shape) and collective (aggregation state) properties. Here, the influence of geometrical parameters and aggregation on the specific loss power (SLP) is analyzed through in-depth structural, morphological, magnetic and thermometric characterizations supported by micromagnetic and heat transfer simulations. To this aim, different samples of cubic Fe3O4 NPs with an average size between 15 nm and 160 nm are prepared via hydrothermal route. For the analyzed samples, the magnetic behavior and heating properties result to be basically determined by the magnetic single- or multi-domain configuration and by the competition between magnetocrystalline and shape anisotropies. This is clarified by micromagnetic simulations, which enable us to also elucidate the role of magnetostatic interactions associated with locally strong aggregation.

SELECTION OF CITATIONS
SEARCH DETAIL
...