Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Chem Soc ; 146(4): 2824-2834, 2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38240579

ABSTRACT

The activity and selectivity of molecular catalysts for the electrochemical CO2 reduction reaction (CO2RR) are influenced by the induced electric field at the electrode/electrolyte interface. We present here a novel electrolyte immobilization method to control the electric field at this interface by positively charging the electrode surface with an imidazolium cation organic layer, which significantly favors CO2 conversion to formate, suppresses hydrogen evolution reaction, and diminishes the operating cell voltage. Those results are well supported by our previous DFT calculations studying the mechanistic role of imidazolium cations in solution for CO2 reduction to formate catalyzed by a model molecular catalyst. This smart electrode surface concept based on covalent grafting of imidazolium on a carbon electrode is successfully scaled up for operating at industrially relevant conditions (100 mA cm-2) on an imidazolium-modified carbon-based gas diffusion electrode using a flow cell configuration, where the CO2 conversion to formate process takes place in acidic aqueous solution to avoid carbonate formation and is catalyzed by a model molecular Rh complex in solution. The formate production rate reaches a maximum of 4.6 gHCOO- m-2 min-1 after accumulating a total of 9000 C of charge circulated on the same electrode. Constant formate production and no significant microscopic changes on the imidazolium-modified cathode in consecutive long-term CO2 electrolysis confirmed the high stability of the imidazolium organic layer under operating conditions for CO2RR.

2.
ChemSusChem ; 15(24): e202201566, 2022 Dec 20.
Article in English | MEDLINE | ID: mdl-36209505

ABSTRACT

An electrolyte engineering strategy was developed for CO2 reduction into formate with a model molecular catalyst, [Rh(bpy)(Cp*)Cl]Cl, by modifying the solvent (organic or aqueous), the proton source (H2 O or acetic acid), and the electrode/solution interface with imidazolium- and pyrrolidinium-based ionic liquids (ILs). Experimental and theoretical density functional theory investigations suggested that π+ -π interactions between the imidazolium-based IL cation and the reduced bipyridine ligand of the catalyst improved the efficiency of the CO2 reduction reaction (CO2 RR) by lowering the overpotential, while granting partial suppression of the hydrogen evolution reaction. This allowed tuning the selectivity towards formate, reaching for this catalyst an unprecedented faradaic efficiency (FEHCOO -) ≥90 % and energy efficiency of 66 % in acetonitrile solution. For the first time, relevant CO2 conversion to formic acid/formate was reached at low overpotential (0.28 V) using a homogeneous catalyst in acidic aqueous solution (pH=3.8). These results open up a new strategy based on electrolyte engineering for enhancing carbon balance in CO2 RR.

SELECTION OF CITATIONS
SEARCH DETAIL
...