Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Methods Mol Biol ; 2431: 181-206, 2022.
Article in English | MEDLINE | ID: mdl-35412277

ABSTRACT

The development of compartmentalized neuron culture systems has been invaluable in the study of neuroinvasive viruses, including the alpha herpesviruses Herpes Simplex Virus 1 (HSV-1) and Pseudorabies Virus (PRV). This chapter provides updated protocols for assembling and culturing rodent embryonic superior cervical ganglion (SCG) and dorsal root ganglion (DRG) neurons in Campenot trichamber cultures. In addition, we provide several illustrative examples of the types of experiments that are enabled by Campenot cultures: (1) Using fluorescence microscopy to investigate axonal outgrowth/extension through the chambers, and alpha herpesvirus infection, intracellular trafficking, and cell-cell spread via axons. (2) Using correlative fluorescence microscopy and cryo electron tomography to investigate the ultrastructure of virus particles trafficking in axons.


Subject(s)
Herpesvirus 1, Human , Herpesvirus 1, Suid , Animals , Axonal Transport/physiology , Axons/metabolism , Herpesvirus 1, Human/physiology , Neurons
2.
Addict Biol ; 25(5): e12797, 2020 09.
Article in English | MEDLINE | ID: mdl-31330570

ABSTRACT

Nicotine self-administration is associated with decreased expression of the glial glutamate transporter (GLT-1) and the cystine-glutamate exchange protein xCT within the nucleus accumbens core (NAcore). N-acetylcysteine (NAC) has been shown to restore these proteins in a rodent model of drug addiction and relapse. However, the specific molecular mechanisms driving its inhibitory effects on cue-induced nicotine reinstatement are unknown. Here, we confirm that extinction of nicotine-seeking behavior is associated with impaired NAcore GLT-1 function and expression and demonstrates that reinstatement of nicotine seeking rapidly enhances membrane fraction GLT-1 expression. Extinction and cue-induced reinstatement of nicotine seeking was also associated with increased tumor necrosis factor alpha (TNFα) and decreased glial fibrillary acidic protein (GFAP) expression in the NAcore. NAC treatment (100 mg/kg/day, i.p., for 5 d) inhibited cue-induced nicotine seeking and suppressed AMPA to NMDA current ratios, suggesting that NAC reduces NAcore postsynaptic excitability. In separate experiments, rats received NAC and an antisense vivo-morpholino to selectively suppress GLT-1 expression in the NAcore during extinction and were subsequently tested for cue-induced reinstatement of nicotine seeking. NAC treatment rescued NAcore GLT-1 expression and attenuated cue-induced nicotine seeking, which was blocked by GLT-1 antisense. NAC also reduced TNFα expression in the NAcore. Viral manipulation of the NF-κB pathway, which is downstream of TNFα, revealed that cue-induced nicotine seeking is regulated by NF-κB pathway signaling in the NAcore independent of GLT-1 expression. Ultimately, these results are the first to show that immunomodulatory mechanisms may regulate known nicotine-induced alterations in glutamatergic plasticity that mediate cue-induced nicotine-seeking behavior.


Subject(s)
Astrocytes/metabolism , Glutamic Acid/metabolism , Nicotine/pharmacology , Nucleus Accumbens/drug effects , Acetylcysteine/metabolism , Animals , Conditioning, Psychological , Disease Models, Animal , Drug-Seeking Behavior/drug effects , Glial Fibrillary Acidic Protein/metabolism , Male , Nicotine/administration & dosage , Rats , Rats, Sprague-Dawley , Self Administration , Signal Transduction , Tumor Necrosis Factor-alpha/metabolism
3.
RNA Biol ; 13(10): 955-972, 2016 10 02.
Article in English | MEDLINE | ID: mdl-27419845

ABSTRACT

Many cellular functions, such as translation, require ribonucleoproteins (RNPs). The biogenesis of RNPs is a multi-step process that, depending on the RNP, can take place in many cellular compartments. Here we examine 2 different RNPs: telomerase and small Cajal body-specific RNPs (scaRNPs). Both of these RNPs are enriched in the Cajal body (CB), which is a subnuclear domain that also has high concentrations of another RNP, small nuclear RNPs (snRNPs). SnRNPs are essential components of the spliceosome, and scaRNPs modify the snRNA component of the snRNP. The CB contains many proteins, including WRAP53, SMN and coilin, the CB marker protein. We show here that coilin, SMN and coilp1, a newly identified protein encoded by a pseudogene in human, associate with telomerase RNA and a subset of scaRNAs. We also have identified a processing element within box C/D scaRNA. Our findings thus further strengthen the connection between the CB proteins coilin and SMN in the biogenesis of telomeras e and box C/D scaRNPs, and reveal a new player, coilp1, that likely participates in this process.


Subject(s)
Coiled Bodies/genetics , Nuclear Proteins/metabolism , Ribonucleoproteins, Small Nuclear/genetics , Survival of Motor Neuron 1 Protein/metabolism , Telomerase/genetics , Animals , Coiled Bodies/metabolism , HeLa Cells , Humans , Mice , Nuclear Proteins/genetics , Protein Binding , Pseudogenes , Ribonucleoproteins, Small Nuclear/metabolism , Survival of Motor Neuron 1 Protein/genetics , Telomerase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...