Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 623(7985): 71-76, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37604186

ABSTRACT

Electrochemical synthesis can provide more sustainable routes to industrial chemicals1-3. Electrosynthetic oxidations may often be performed 'reagent-free', generating hydrogen (H2) derived from the substrate as the sole by-product at the counter electrode. Electrosynthetic reductions, however, require an external source of electrons. Sacrificial metal anodes are commonly used for small-scale applications4, but more sustainable options are needed at larger scale. Anodic water oxidation is an especially appealing option1,5,6, but many reductions require anhydrous, air-free reaction conditions. In such cases, H2 represents an ideal alternative, motivating the growing interest in the electrochemical hydrogen oxidation reaction (HOR) under non-aqueous conditions7-12. Here we report a mediated H2 anode that achieves indirect electrochemical oxidation of H2 by pairing thermal catalytic hydrogenation of an anthraquinone mediator with electrochemical oxidation of the anthrahydroquinone. This quinone-mediated H2 anode is used to support nickel-catalysed cross-electrophile coupling (XEC), a reaction class gaining widespread adoption in the pharmaceutical industry13-15. Initial validation of this method in small-scale batch reactions is followed by adaptation to a recirculating flow reactor that enables hectogram-scale synthesis of a pharmaceutical intermediate. The mediated H2 anode technology disclosed here offers a general strategy to support H2-driven electrosynthetic reductions.

2.
J Org Chem ; 68(9): 3695-8, 2003 May 02.
Article in English | MEDLINE | ID: mdl-12713381

ABSTRACT

An improved and efficient bromination of 3,5-bis(trifluoromethyl)benzene was developed. A safe and reliable preparation of the potentially explosive 3,5-bis(trifluoromethyl)phenyl Grignard and 3-trifluoromethylphenyl Grignard reagents, from the precursor bromides, is described. Reaction System Screening Tool (RSST) and Differential Thermal Analysis (DTA) studies suggest these trifluoromethylphenyl Grignard reagents can detonate on loss of solvent contact or upon moderate heating. When prepared and handled according to the methods described herein, these Grignard reagents can be safely prepared and carried on to advanced intermediates.

SELECTION OF CITATIONS
SEARCH DETAIL
...