Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Preprint in English | medRxiv | ID: ppmedrxiv-21266441

ABSTRACT

ObjectiveTo study the effect of methotrexate (MTX) and its discontinuation on the humoral immune response after COVID-19 vaccination in patients with autoimmune rheumatic diseases (AIRD). MethodsIn this retrospective study, neutralising SARS-CoV-2 antibodies were measured after second vaccination in 64 rheumatic patients on methotrexate therapy, 31 of whom temporarily paused medication without a fixed regimen. The control group consisted of 21 AIRD patients without immunosuppressive medication. ResultsMTX patients showed a significantly lower mean antibody response compared to AIRD patients without immunosuppressive therapy (71.8 % vs 92.4 %, p<0.001). For patients taking MTX, age correlated negatively with immune response (r=-0.49; p<0.001). All nine patients with antibody levels below the cut-off were older than 60 years. Patients who held MTX during at least one vaccination showed significantly higher mean neutralising antibody levels after second vaccination, compared to patients who continued MTX therapy during both vaccinations (83.1 % vs 61.2 %, p=0.001). This effect was particularly pronounced in patients older than 60 years (80.8 % vs 51.9 %, p=0.001). The impact of the time period after vaccination was greater than of the time before vaccination with the critical cut-off being 10 days. ConclusionMTX reduces the immunogenicity of SARS-CoV-2 vaccination in an age-dependent manner. Our data further suggest that holding MTX for at least 10 days after vaccination significantly improves the antibody response in patients over 60 years of age.

2.
Preprint in English | medRxiv | ID: ppmedrxiv-21258481

ABSTRACT

Severe COVID-19 is linked to both dysfunctional immune response and unrestrained immunopathogenesis, and it remains unclear if T cells also contribute to disease pathology. Here, we combined single-cell transcriptomics and proteomics with mechanistic studies to assess pathogenic T cell functions and inducing signals. We identified highly activated, CD16+ T cells with increased cytotoxic functions in severe COVID-19. CD16 expression enabled immune complex-mediated, T cell receptor-independent degranulation and cytotoxicity not found in other diseases. CD16+ T cells from COVID-19 patients promoted microvascular endothelial cell injury and release of neutrophil and monocyte chemoattractants. CD16+ T cell clones persisted beyond acute disease maintaining their cytotoxic phenotype. Age-dependent generation of C3a in severe COVID-19 induced activated CD16+ cytotoxic T cells. The proportion of activated CD16+ T cells and plasma levels of complement proteins upstream of C3a correlated with clinical outcome of COVID-19, supporting a pathological role of exacerbated cytotoxicity and complement activation in COVID-19.

3.
Preprint in English | bioRxiv | ID: ppbiorxiv-450190

ABSTRACT

Emerging variants of concern (VOCs) drive the SARS-CoV-2 pandemic. We assessed VOC B.1.1.7, now prevalent in several countries, and VOC B.1.351, representing the greatest threat to populations with immunity to the early SARS-CoV-2 progenitors. B.1.1.7 showed a clear fitness advantage over the progenitor variant (wt-S614G) in ferrets and two mouse models, where the substitutions in the spike glycoprotein were major drivers for fitness advantage. In the "superspreader" hamster model, B.1.1.7 and wt-S614G had comparable fitness, whereas B.1.351 was outcompeted. The VOCs had similar replication kinetics as compared to wt-S614G in human airway epithelial cultures. Our study highlights the importance of using multiple models for complete fitness characterization of VOCs and demonstrates adaptation of B.1.1.7 towards increased upper respiratory tract replication and enhanced transmission in vivo. Summary sentenceB.1.1.7 VOC outcompetes progenitor SARS-CoV-2 in upper respiratory tract replication competition in vivo.

4.
Preprint in English | medRxiv | ID: ppmedrxiv-21252379

ABSTRACT

While evidence for pre-existing SARS-CoV-2-cross-reactive CD4+ T cells in unexposed individuals is increasing, their functional significance remains unclear. Here, we comprehensively determined SARS-CoV-2-cross-reactivity and human coronavirus-reactivity in unexposed individuals. SARS-CoV-2-cross-reactive CD4+ T cells were ubiquitous, but their presence decreased with age. Within the spike glycoprotein fusion domain, we identified a universal immunodominant coronavirus-specific peptide epitope (iCope). Pre-existing spike- and iCope-reactive memory T cells were efficiently recruited into mild SARS-CoV-2 infections and their abundance correlated with higher IgG titers. Importantly, the cells were also reactivated after primary BNT162b2 COVID-19 mRNA vaccination in which their kinetics resembled that of secondary immune responses. Our results highlight the functional importance of pre-existing spike-cross-reactive T cells in SARS-CoV-2 infection and vaccination. Abundant spike-specific cross-immunity may be responsible for the unexpectedly high efficacy of current vaccines even with single doses and the high rate of asymptomatic/mild infection courses.

5.
Preprint in English | medRxiv | ID: ppmedrxiv-21252430

ABSTRACT

BackgroundRapid antigen-detecting tests (Ag-RDTs) for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can transform pandemic control. Thus far, sensitivity ([≤]85%) of lateral-flow assays has limited scale-up. Conceivably, microfluidic immunofluorescence Ag-RDTs could increase sensitivity for SARS-CoV-2 detection. Materials and MethodsThis multi-centre diagnostic accuracy study investigated performance of the microfluidic immunofluorescence LumiraDx assay, enrolling symptomatic and asymptomatic participants with suspected SARS-CoV-2 infection. Participants collected a supervised nasal mid-turbinate (NMT) self-swab for Ag-RDT testing, in addition to a professionally-collected nasopharyngeal (NP) swab for routine testing with reverse transcriptase polymerase chain reaction (RT-PCR). Results were compared to calculate sensitivity and specificity. Sub-analyses investigated the results by viral load, symptom presence and duration. An analytical study assessed exclusivity and limit-of-detection (LOD). In addition, we evaluated ease-of-use. ResultsStudy conduct was between November 2nd 2020 and January 21st 2021. 761 participants were enrolled, with 486 participants reporting symptoms on testing day. 120 out of 146 RT-PCR positive cases were detected positive by LumiraDx, resulting in a sensitivity of 82.2% (95% CI: 75.2%-87.5%). Specificity was 99.3% (CI: 98.3-99.7%). Sensitivity was increased in individuals with viral load [≥] 7 log10 SARS-CoV2 RNA copies/ml (93.8%; CI: 86.2%-97.3%). Testing against common respiratory commensals and pathogens showed no cross-reactivity and LOD was estimated to be 2-56 PFU/mL. The ease-of-use-assessment was favourable for lower throughput settings. ConclusionThe LumiraDx assay showed excellent analytical sensitivity, exclusivity and clinical specificity with good clinical sensitivity using supervised NMT self-sampling.

6.
Preprint in English | medRxiv | ID: ppmedrxiv-21249314

ABSTRACT

Rapid antigen-detecting tests (Ag-RDTs) can complement molecular diagnostics for COVID-19. The recommended temperature for storage of SARS-CoV-2 Ag-RDTs ranges between 5-30{degrees}C. In many countries that would benefit from SARS-CoV-2 Ag-RDTs, mean temperatures exceed 30{degrees}C. We assessed analytical sensitivity and specificity of eleven commercially available SARS-CoV-2 Ag-RDTs using different storage and operational temperatures, including (i) long-term storage and testing at recommended conditions, (ii) recommended storage conditions followed by 10 minutes exposure to 37{degrees}C and testing at 37{degrees}C and (iii) 3 weeks storage followed by testing at 37{degrees}C. The limits of detection of SARS-CoV-2 Ag-RDTs under recommended conditions ranged from 8.2x105-7.9x107 genome copies/ml of infectious SARS-CoV-2 cell culture supernatant. Despite long-term storage at recommended conditions, 10 minutes pre-incubation of Ag-RDTs and testing at 37{degrees}C resulted in about ten-fold reduced sensitivity for 46% of SARS-CoV-2 Ag-RDTs, including both Ag-RDTs currently listed for emergency use by the World Health Organization. After 3 weeks of storage at 37{degrees}C, 73% of SARS-CoV-2 Ag-RDTs exhibited about ten-fold reduced sensitivity. Specificity of SARS-CoV-2 Ag-RDTs using cell culture-derived human coronaviruses HCoV-229E and HCoV-OC43 was not affected by storage and testing at 37{degrees}C. In summary, short- and long-term exposure to elevated temperatures likely impairs sensitivity of several SARS-CoV-2 Ag-RDTs that may translate to false-negative test results at clinically relevant virus concentrations compatible with inter-individual transmission. Ensuring appropriate transport and storage conditions, and development of tests that are more robust across temperature fluctuations will be important for accurate use of SARS-CoV-2 Ag-RDTs in tropical settings.

7.
Preprint in English | medRxiv | ID: ppmedrxiv-20248121

ABSTRACT

BackgroundSince the beginning of the coronavirus disease 2019 (COVID-19) pandemic, there has been increasing demand to identify predictors of severe clinical course in patients infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Human leukocyte antigen alleles (HLA) have been suggested as potential genetic host factors. We sought to evaluate this hypothesis by conducting an international multicenter study using HLA sequencing with subsequent independent validation. MethodsWe analyzed a total of 332 samples. First, we enrolled 233 patients in Germany, Spain, and Switzerland for HLA and whole exome sequencing. Furthermore, we validated our results in a public data set (United States, n=99). Patients older than 18 years presenting with COVID-19 were included, representing the full spectrum of the disease. HLA candidate alleles were identified in the derivation cohort (n=92) and tested in two independent validation cohorts (n=240). ResultsWe identified HLA-C* 04:01 as a novel genetic predictor for severe clinical course in COVID-19. Carriers of HLA-C* 04:01 had twice the risk of intubation when infected with SARS-CoV-2 (hazard ratio 2.1, adjusted p-value=0.0036). Importantly, these findings were successfully replicated in an independent data set. Furthermore, our findings are biologically plausible, as HLA-C* 04:01 has fewer predicted bindings sites with relevant SARS-CoV-2 peptides as compared to other HLA alleles. Exome sequencing confirmed findings from HLA analysis. ConclusionsHLA-C* 04:01 carriage is associated with a twofold increased risk of intubation in patients infected with SARS-CoV-2. Testing for HLA-C* 04:01 could have clinical implications to identify high-risk patients and individualize management.

8.
Preprint in English | bioRxiv | ID: ppbiorxiv-252320

ABSTRACT

The emergence of SARS-CoV-2 led to pandemic spread of coronavirus disease 2019 (COVID-19), manifesting with respiratory symptoms and multi-organ dysfunction. Detailed characterization of virus-neutralizing antibodies and target epitopes is needed to understand COVID-19 pathophysiology and guide immunization strategies. Among 598 human monoclonal antibodies (mAbs) from ten COVID-19 patients, we identified 40 strongly neutralizing mAbs. The most potent mAb CV07-209 neutralized authentic SARS-CoV-2 with IC50 of 3.1 ng/ml. Crystal structures of two mAbs in complex with the SARS-CoV-2 receptor-binding domain at 2.55 and 2.70 [A] revealed a direct block of ACE2 attachment. Interestingly, some of the near-germline SARS-CoV-2 neutralizing mAbs reacted with mammalian self-antigens. Prophylactic and therapeutic application of CV07-209 protected hamsters from SARS-CoV-2 infection, weight loss and lung pathology. Our results show that non-self-reactive virus-neutralizing mAbs elicited during SARS-CoV-2 infection are a promising therapeutic strategy.

9.
Preprint in English | medRxiv | ID: ppmedrxiv-20131540

ABSTRACT

Infection by the new corona virus strain SARS-CoV-2 and its related syndrome COVID-19 has caused several hundreds of thousands of deaths worldwide. Patients of higher age and with preexisting chronic health conditions are at an increased risk of fatal disease outcome. However, detailed information on causes of death and the contribution of comorbidities to death yet is missing. Here, we report autopsy findings on causes of death and comorbidities of 26 decedents that had clinically presented with severe COVID-19. We found that septic shock and multi organ failure was the most common immediate cause of death, often due to suppurative pulmonary infection. Respiratory failure due to diffuse alveolar damage presented as the most immediate cause of death in fewer cases. Several comorbidities, such as hypertension, ischemic heart disease, and obesity were present in the vast majority of patients. Our findings reveal that causes of death were directly related to COVID-19 in the majority of decedents, while they appear not to be an immediate result of preexisting health conditions and comorbidities. We therefore suggest that the majority of patients had died of COVID-19 with only contributory implications of preexisting health conditions to the mechanism of death.

10.
Preprint in English | medRxiv | ID: ppmedrxiv-20125484

ABSTRACT

As children are under-represented in current studies aiming to analyse transmission of SARS-coronavirus 2 (SARS-CoV-2), their contribution to transmission is unclear. Viral load, as measured by RT-PCR, can inform considerations regarding transmission, especially if existing knowledge of viral load in other respiratory diseases is taken into account. RT-PCR threshold cycle data from 3303 patients who tested positive for SARS-CoV-2 (out of 77,996 persons tested in total, drawn from across Germany) were analysed to examine the relationship between patient age and estimated viral load. Two PCR systems were used. In data from the PCR system predominantly used for community and cluster screening during the early phase of the epidemic (Roche LightCycler 480 II), when such screening was frequent practice, viral loads do not differ significantly in three comparisons between young and old age groups (differences in log10 viral loads between young and old estimated from raw viral load data and a Bayesian mixture model of gamma distributions collectively range between -0.11 and -0.43). Data from a second type of PCR system (Roche cobas 6800/8800), introduced into diagnostic testing on March 16, 2020 and used during the time when household and other contact testing was reduced, show a credible but small difference in the three comparisons between young and old age groups (differences, measured as above, collectively range between -0.43 and -0.83). This small difference may be due to differential patterns of PCR instrument utilization rather than to an actual difference in viral load. Considering household transmission data on influenza, which has a similar viral load kinetic to SARS-CoV-2, the viral load differences between age groups observed in this study are likely to be of limited relevance. Combined data from both PCR instruments show that viral loads of at least 250,000 copies, a threshold we previously established for the isolation of infectious virus in cell culture at more than 5% probability, were present across the study period in 29.0% of kindergarten-aged patients 0-6 years old (n=38), 37.3% of those aged 0-19 (n=150), and in 51.4% of those aged 20 and above (n=3153). The differences in these fractions may also be due to differences in test utilization. We conclude that a considerable percentage of infected people in all age groups, including those who are pre- or mild-symptomatic, carry viral loads likely to represent infectivity. Based on these results and uncertainty about the remaining incidence, we recommend caution and careful monitoring during gradual lifting of non-pharmaceutical interventions. In particular, there is little evidence from the present study to support suggestions that children may not be as infectious as adults.

11.
Preprint in English | medRxiv | ID: ppmedrxiv-20030502

ABSTRACT

Coronavirus disease 2019 (COVID-19) is an acute respiratory tract infection that emerged in late 20191,2. Initial outbreaks in China involved 13.8% cases with severe-, and 6.1% with critical courses3. This severe presentation corresponds to the usage of a virus receptor that is expressed predominantly in the lung2,4. By causing an early onset of severe symptoms, this same receptor tropism is thought to have determined pathogenicity but also aided the control of severe acute respiratory syndrome (SARS) in 20035. However, there are reports of COVID-19 cases with mild upper respiratory tract symptoms, suggesting a potential for pre- or oligosymptomatic transmission6-8. There is an urgent need for information on body site - specific virus replication, immunity, and infectivity. Here we provide a detailed virological analysis of nine cases, providing proof of active virus replication in upper respiratory tract tissues. Pharyngeal virus shedding was very high during the first week of symptoms (peak at 7.11 x 108 RNA copies per throat swab, day 4). Infectious virus was readily isolated from throat- and lung-derived samples, but not from stool samples in spite of high virus RNA concentration. Blood and urine never yielded virus. Active replication in the throat was confirmed by viral replicative RNA intermediates in throat samples. Sequence-distinct virus populations were consistently detected in throat- and lung samples of one same patient. Shedding of viral RNA from sputum outlasted the end of symptoms. Seroconversion occurred after 6-12 days, but was not followed by a rapid decline of viral loads. COVID-19 can present as a mild upper respiratory tract illness. Active virus replication in the upper respiratory tract puts prospects of COVID-19 containment in perspective.

SELECTION OF CITATIONS
SEARCH DETAIL
...