Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Type of study
Language
Publication year range
1.
Cell Physiol Biochem ; 57(3): 161-168, 2023 May 14.
Article in English | MEDLINE | ID: mdl-37190847

ABSTRACT

Sarcopenia is a progressive skeletal muscle disorder associated with aging, resulting in loss of muscle mass and function. It has been linked to inflammation, oxidative stress, insulin resistance, hormonal changes (i.e. alterations in the levels or activity of hormones which can occur due to a variety of factors, including aging, stress, disease, medication, and environmental factors), and impaired muscle satellite cell activation. The gut microbiome is also essential for muscle health, and supplements such as probiotics, prebiotics, protein, creatine, and betaalanine can support muscle growth and function while also promoting gut health. Chronic low-grade inflammation is a leading cause of sarcopenia, which can activate signaling pathways that lead to muscle wasting and reduce muscle protein synthesis. Insulin resistance, hormonal changes, and impaired muscle satellite cell activation contribute to sarcopenia, and high levels of fat mass also play a role in the pathogenesis of sarcopenia. Resistance exercise and dietary supplementation have been shown to be effective treatments for sarcopenia. In addition, a combination of resistance exercise and supplementation has been shown to have a more significant beneficial effect on anthropometric and muscle function parameters, leading to a decrease in sarcopenic state. Thus, understanding the relationship between the gut microbiome and muscle metabolism is crucial for developing new treatments for sarcopenia across age groups.


Subject(s)
Insulin Resistance , Sarcopenia , Humans , Sarcopenia/etiology , Muscle, Skeletal/metabolism , Aging/physiology , Dietary Supplements , Inflammation/pathology
2.
Journal of Integrative Medicine ; (12): 439-450, 2021.
Article in English | WPRIM (Western Pacific) | ID: wpr-888766

ABSTRACT

OBJECTIVE@#To evaluate the synergic effects of a novel oral supplement formulation, containing prebiotics, yeast β-glucans, minerals and silymarin (Silybum marianum), on lipid and glycidic metabolism, inflammatory and mitochondrial proteins of the liver, in control and high-fat diet-induced obese mice.@*METHODS@#After an acclimation period, 32 male C57BL/6 mice were divided into the following groups: nonfat diet (NFD) vehicle, NFD supplemented, high-fat diet (HFD) vehicle and HFD supplemented. The vehicle and experimental formulation were administered orally by gavage once a day during the last four weeks of the diet (28 consecutive days). We then evaluated energy homeostasis, inflammation, and mitochondrial protein expression in these groups of mice.@*RESULTS@#After four weeks of supplementation, study groups experienced reduced glycemia, dyslipidemia, fat, and hepatic fibrosis levels. Additionally, proliferator-activated receptor-α, AMP-activated protein kinase-1α, peroxisome proliferator-activated receptor γ co-activator-1α, and mitochondrial transcription factor A expression levels were augmented; however, levels of inhibitor of nuclear factor-κB kinase subunit α and p65 nuclear factor-κB expression, and oxidative markers were reduced. Notably, the cortisol/C-reactive protein ratio, a well-characterized marker of the hypothalamic-pituitary-adrenal axis immune interface status, was found to be modulated by the supplement.@*CONCLUSION@#We discovered that the novel supplement was able to modify different antioxidant, metabolic and inflammatory pathways, improving the energy homeostasis and inflammatory status, and consequently alleviated hepatic steatosis.


Subject(s)
Animals , Mice , Antioxidants , Dietary Supplements , Glucans , Hypothalamo-Hypophyseal System , Liver , Mice, Inbred C57BL , Mice, Obese , Silybum marianum , Minerals , Pituitary-Adrenal System , Prebiotics , Saccharomyces cerevisiae
SELECTION OF CITATIONS
SEARCH DETAIL
...