Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Org Process Res Dev ; 27(7): 1384-1389, 2023 Jul 21.
Article in English | MEDLINE | ID: mdl-37496955

ABSTRACT

Mol-scale oxyfunctionalization of cyclohexane to cyclohexanol/cyclohexanone (KA-oil) using an unspecific peroxygenase is reported. Using AaeUPO from Agrocybe aegerita and simple H2O2 as an oxidant, cyclohexanol concentrations of more than 300 mM (>60% yield) at attractive productivities (157 mM h-1, approx. 15 g L-1 h-1) were achieved. Current limitations of the proposed biooxidation system have been identified paving the way for future improvements and implementation.

2.
Prep Biochem Biotechnol ; 47(6): 547-553, 2017 Jul 03.
Article in English | MEDLINE | ID: mdl-28045600

ABSTRACT

Depolymerization of lignocellulosic biomass is catalyzed by groups of enzymes whose action is influenced by substrate features and the composition of cellulase preparation. Cellulases contain a mixture of variety of enzymes, whose proportions dictate the saccharification of biomass. In the current study, four cellulase preparation varying in their composition were used to hydrolyze two types of alkali-treated biomass (aqueous ammonia-treated rice straw and sodium hydroxide-treated rice straw) to study the effect on catalytic rate, saccharification yields, and sugar release profile. We found that substrate features affected the extent of saccharification but had minimal effect on the sugar release pattern. In addition, complete hydrolysis to glucose was observed with enzyme preparation having at least a cellobiase units (CBU)/carboxymethyl cellulose (CMC) ratio (>0.15), while a modified enzyme ratio can be used for oligosaccharide synthesis. Thus, cellulase preparation with defined ratios of the three main enzymes can improve the saccharification which is of utmost importance in defining the success of lignocellulose-based economies.


Subject(s)
Aspergillus niger/enzymology , Cellulase/metabolism , Cellulose/metabolism , Oryza/metabolism , Trichoderma/enzymology , Biomass , Carbohydrate Metabolism , Hydrolysis , Industrial Microbiology , Lignin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...