Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
NeuroRehabilitation ; 41(4): 791-800, 2017.
Article in English | MEDLINE | ID: mdl-29254111

ABSTRACT

BACKGROUND: Foot drop is common gait impairment after stroke. Functional electrical stimulation (FES) of the ankle dorsiflexor muscles during the swing phase of gait can help correcting foot drop. OBJECTIVE: To evaluate efficacy of additional novel FES system to conventional therapy in facilitating motor recovery in the lower extremities and improving walking ability after stroke. METHODS: Sixteen stroke patients were randomly allocated to the FES group (FES therapy plus conventional rehabilitation program) (n = 8), and control group (conventional rehabilitation program) n = 8. FES was delivered for 30 min during gait to induce ankle plantar and dorsiflexion. MAIN OUTCOME MEASURES: gait speed using 10 Meter Walk Test (10 MWT), Fugl-Meyer Assessment (FMA), Berg Balance Scale (BBS) and modified Barthel Index (MBI). RESULTS: Results showed a significant increase in gait speed in FES group (p < 0.001), higher than the minimal detected change. The FES group showed improvement in functional independence in the activities of daily living, motor recovery and gait performance. CONCLUSIONS: The findings suggest that novel FES therapy combined with conventional rehabilitation is more effective on walking speed, mobility of the lower extremity, balance disability and activities of daily living compared to a conventional rehabilitation program only.


Subject(s)
Electric Stimulation Therapy , Stroke Rehabilitation , Ankle Joint/physiology , Gait/physiology , Humans , Walking Speed/physiology
2.
Biomed Res Int ; 2017: 7659893, 2017.
Article in English | MEDLINE | ID: mdl-28251157

ABSTRACT

The ArmAssist is a simple low-cost robotic system for upper limb motor training that combines known benefits of repetitive task-oriented training, greater intensity of practice, and less dependence on therapist assistance. The aim of this preliminary study was to compare the efficacy of ArmAssist (AA) robotic training against matched conventional arm training in subacute stroke subjects with moderate-to-severe upper limb impairment. Twenty-six subjects were enrolled within 3 months of stroke and randomly assigned to the AA group or Control group (n = 13 each). Both groups were trained 5 days per week for 3 weeks. The primary outcome measure was Fugl-Meyer Assessment-Upper Extremity (FMA-UE) motor score, and the secondary outcomes were Wolf Motor Function Test-Functional Ability Scale (WMFT-FAS) and Barthel index (BI). The AA group, in comparison to the Control group, showed significantly greater increases in FMA-UE score (18.0 ± 9.4 versus 7.5 ± 5.5, p = 0.002) and WMFT-FAS score (14.1 ± 7.9 versus 6.7 ± 7.8, p = 0.025) after 3 weeks of treatment, whereas the increase in BI was not significant (21.2 ± 24.8 versus 13.1 ± 10.7, p = 0.292). There were no adverse events. We conclude that arm training using the AA robotic device is safe and able to reduce motor deficits more effectively than matched conventional arm training in subacute phase of stroke. The study has been registered at the ClinicalTrials.gov, ID: NCT02729649.


Subject(s)
Robotics/methods , Stroke Rehabilitation/methods , Upper Extremity/physiopathology , Demography , Female , Humans , Male , Middle Aged , Stroke/physiopathology , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...