Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
Molecules ; 29(10)2024 May 15.
Article in English | MEDLINE | ID: mdl-38792185

ABSTRACT

This research focuses on the rational design of porous enzymatic electrodes, using horseradish peroxidase (HRP) as a model biocatalyst. Our goal was to identify the main obstacles to maximizing biocatalyst utilization within complex porous structures and to assess the impact of various carbon nanomaterials on electrode performance. We evaluated as-synthesized carbon nanomaterials, such as Carbon Aerogel, Coral Carbon, and Carbon Hollow Spheres, against the commercially available Vulcan XC72 carbon nanomaterial. The 3D electrodes were constructed using gelatin as a binder, which was cross-linked with glutaraldehyde. The bioelectrodes were characterized electrochemically in the absence and presence of 3 mM of hydrogen peroxide. The capacitive behavior observed was in accordance with the BET surface area of the materials under study. The catalytic activity towards hydrogen peroxide reduction was partially linked to the capacitive behavior trend in the absence of hydrogen peroxide. Notably, the Coral Carbon electrode demonstrated large capacitive currents but low catalytic currents, an exception to the observed trend. Microscopic analysis of the electrodes indicated suboptimal gelatin distribution in the Coral Carbon electrode. This study also highlighted the challenges in transferring the preparation procedure from one carbon nanomaterial to another, emphasizing the importance of binder quantity, which appears to depend on particle size and quantity and warrants further studies. Under conditions of the present study, Vulcan XC72 with a catalytic current of ca. 300 µA cm-2 in the presence of 3 mM of hydrogen peroxide was found to be the most optimal biocatalyst support.

2.
ChemistryOpen ; : e202400064, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38607952

ABSTRACT

The direct electrochemical reduction of nicotinamide adenine dinucleotide (NAD+) results in various products, complicating the regeneration of the crucial 1,4-NADH cofactor for enzymatic reactions. Previous research primarily focused on steady-state polarization to examine potential impacts on product selectivity. However, this study explores the influence of dynamic conditions on the selectivity of NAD+ reduction products by comparing two dynamic profiles with steady-state conditions. Our findings reveal that the main products, including 1,4-NADH, several dimers, and ADP-ribose, remained consistent across all conditions. A minor by-product, 1,6-NADH, was also identified. The product distribution varied depending on the experimental conditions (steady state vs. dynamic) and the concentration of NAD+, with higher concentrations and overpotentials promoting dimerization. The optimal yield of 1,4-NADH was achieved under steady-state conditions with low overpotential and NAD+ concentrations. While dynamic conditions enhanced the 1,4-NADH yield at shorter reaction times, they also resulted in a significant amount of unidentified products. Furthermore, this study assessed the potential of using pulsed electrochemical regeneration of 1,4-NADH with enoate reductase (XenB) for cyclohexenone reduction.

5.
ACS Nano ; 15(10): 15656-15666, 2021 10 26.
Article in English | MEDLINE | ID: mdl-34570489

ABSTRACT

The bottom-up assembly of multicompartment artificial cells that are able to direct biochemical reactions along a specific spatial pathway remains a considerable engineering challenge. In this work, we address this with a microfluidic platform that is able to produce monodisperse multivesicular vesicles (MVVs) to serve as synthetic eukaryotic cells. Using a two-inlet polydimethylsiloxane channel design to co-encapsulate different populations of liposomes we are able to produce lipid-based MVVs in a high-throughput manner and with three separate inner compartments, each containing a different enzyme: α-glucosidase, glucose oxidase, and horseradish peroxidase. We demonstrate the ability of these MVVs to carry out directed chemical communication between the compartments via the reconstitution of size-selective membrane pores. Therefore, the signal transduction, which is triggered externally, follows a specific spatial pathway between the compartments. We use this platform to study the effects of enzyme cascade compartmentalization by direct analytical comparison between bulk, one-, two-, and three-compartment systems. This microfluidic strategy to construct complex hierarchical structures is not only suitable to study compartmentalization effects on biochemical reactions but is also applicable for developing advanced drug delivery systems as well as minimal cells in the field of bottom-up synthetic biology.


Subject(s)
Artificial Cells , Eukaryotic Cells , Liposomes , Microfluidics , Signal Transduction
6.
Nat Commun ; 12(1): 4972, 2021 08 17.
Article in English | MEDLINE | ID: mdl-34404795

ABSTRACT

A variety of artificial cells springs from the functionalization of liposomes with proteins. However, these models suffer from low durability without repair and replenishment mechanisms, which can be partly addressed by replacing the lipids with polymers. Yet natural membranes are also dynamically remodeled in multiple cellular processes. Here, we show that synthetic amphiphile membranes also undergo fusion, mediated by the protein machinery for synaptic secretion. We integrated fusogenic SNAREs in polymer and hybrid vesicles and observed efficient membrane and content mixing. We determined bending rigidity and pore edge tension as key parameters for fusion and described its plausible progression through cryo-EM snapshots. These findings demonstrate that dynamic membrane phenomena can be reconstituted in synthetic materials, thereby providing new tools for the assembly of synthetic protocells.


Subject(s)
Membrane Fusion/physiology , Membranes/metabolism , Polymers/metabolism , SNARE Proteins/chemistry , SNARE Proteins/metabolism , Animals , Cryoelectron Microscopy , Liposomes/metabolism , Nerve Tissue Proteins , Protein Binding , R-SNARE Proteins , Rats , Synaptosomal-Associated Protein 25 , Syntaxin 1 , Vesicle-Associated Membrane Protein 2
7.
Annu Rev Chem Biomol Eng ; 12: 287-308, 2021 06 07.
Article in English | MEDLINE | ID: mdl-34097845

ABSTRACT

The bottom-up approach in synthetic biology aims to create molecular ensembles that reproduce the organization and functions of living organisms and strives to integrate them in a modular and hierarchical fashion toward the basic unit of life-the cell-and beyond. This young field stands on the shoulders of fundamental research in molecular biology and biochemistry, next to synthetic chemistry, and, augmented by an engineering framework, has seen tremendous progress in recent years thanks to multiple technological and scientific advancements. In this timely review of the research over the past decade, we focus on three essential features of living cells: the ability to self-reproduce via recursive cycles of growth and division, the harnessing of energy to drive cellular processes, and the assembly of metabolic pathways. In addition, we cover the increasing efforts to establish multicellular systems via different communication strategies and critically evaluate the potential applications.


Subject(s)
Artificial Cells , Synthetic Biology
8.
Bioconjug Chem ; 32(5): 897-903, 2021 05 19.
Article in English | MEDLINE | ID: mdl-33902282

ABSTRACT

The transfer of electrons across and along biological membranes drives the cellular energetics. In the context of artificial cells, it can be mimicked by minimal means, while using synthetic alternatives of the phospholipid bilayer and the electron-transducing proteins. Furthermore, the scaling up to biologically relevant and optically accessible dimensions may provide further insight and allow assessment of individual events but has been rarely attempted so far. Here, we visualized the mediated transmembrane oxidation of encapsulated NADH in giant unilamellar vesicles via confocal laser scanning and time-correlated single photon counting wide-field microscopy. To this end, we first augmented phospholipid membranes with an amphiphilic copolymer in order to check its influence on the oxidation kinetics spectrophotometrically. Then, we scaled up the compartments and followed the process microscopically.


Subject(s)
Cell Membrane/metabolism , NAD/metabolism , Unilamellar Liposomes/metabolism , Oxidation-Reduction
9.
ACS Synth Biol ; 10(6): 1490-1504, 2021 06 18.
Article in English | MEDLINE | ID: mdl-33761235

ABSTRACT

Artificial systems capable of self-sustained movement with self-sufficient energy are of high interest with respect to the development of many challenging applications, including medical treatments, but also technical applications. The bottom-up assembly of such systems in the context of synthetic biology is still a challenging task. In this work, we demonstrate the biocompatibility and efficiency of an artificial light-driven energy module and a motility functional unit by integrating light-switchable photosynthetic vesicles with demembranated flagella. The flagellar propulsion is coupled to the beating frequency, and dynamic ATP synthesis in response to illumination allows us to control beating frequency of flagella in a light-dependent manner. In addition, we verified the functionality of light-powered synthetic vesicles in in vitro motility assays by encapsulating microtubules assembled with force-generating kinesin-1 motors and the energy module to investigate the dynamics of a contractile filamentous network in cell-like compartments by optical stimulation. Integration of this photosynthetic system with various biological building blocks such as cytoskeletal filaments and molecular motors may contribute to the bottom-up synthesis of artificial cells that are able to undergo motor-driven morphological deformations and exhibit directional motion in a light-controllable fashion.


Subject(s)
Artificial Cells , Axoneme/radiation effects , Cell Engineering/methods , Chlamydomonas reinhardtii/cytology , Flagella/radiation effects , Light , Adenosine Triphosphate/metabolism , Axoneme/metabolism , Cell Movement/radiation effects , Cilia/radiation effects , Dyneins/metabolism , Energy Metabolism/radiation effects , Flagella/metabolism , Kinesins/metabolism , Liposomes/metabolism , Liposomes/radiation effects , Photosynthesis/radiation effects , Signal Transduction/radiation effects
10.
Front Chem ; 8: 579869, 2020.
Article in English | MEDLINE | ID: mdl-33240844

ABSTRACT

The intensification of an electrochemical process by forced periodic operation was studied for the first time using the computer-aided Nonlinear Frequency Response method. This method enabled the automatic generation of frequency response functions and the DC components (Faradaic rectification) of the cost (overpotential) and benefit (current density) indicators. The case study, oxygen reduction reaction, was investigated both experimentally and theoretically. The results of the cost-benefit indicator analysis show that forced periodic change of electrode potential can be superior when compared to the steady-state regime for specific operational parameters. When the electrode rotation rate is changed periodically, the process will always deteriorate as the dynamic operation will inevitably lead to the thickening of the diffusion layer. This phenomenon is explained both from a mathematical and a physical point of view.

11.
Small ; 16(35): e2002440, 2020 09.
Article in English | MEDLINE | ID: mdl-32776424

ABSTRACT

Cells have the ability to sense different environmental signals and position themselves accordingly in order to support their survival. Introducing analogous capabilities to the bottom-up assembled minimal synthetic cells is an important step for their autonomy. Here, a minimal synthetic cell which combines a multistimuli sensitive adhesion unit with an energy conversion module is reported, such that it can adhere to places that have the right environmental parameters for ATP production. The multistimuli sensitive adhesion unit senses light, pH, oxidative stress, and the presence of metal ions and can regulate the adhesion of synthetic cells to substrates in response to these stimuli following a chemically coded logic. The adhesion unit is composed of the light and redox responsive protein interaction of iLID and Nano and the pH sensitive and metal ion mediated binding of protein His-tags to Ni2+ -NTA complexes. Integration of the adhesion unit with a light to ATP conversion module into one synthetic cell allows it to adhere to places under blue light illumination, non-oxidative conditions, at neutral pH and in the presence of metal ions, which are the right conditions to synthesize ATP. Thus, the multistimuli responsive adhesion unit allows synthetic cells to self-position and execute their functions.


Subject(s)
Artificial Cells , Hydrogen-Ion Concentration , Ions , Light , Oxidation-Reduction
12.
Proc Natl Acad Sci U S A ; 117(26): 15006-15017, 2020 06 30.
Article in English | MEDLINE | ID: mdl-32554497

ABSTRACT

Cytochrome bo3 ubiquinol oxidase is a transmembrane protein, which oxidizes ubiquinone and reduces oxygen, while pumping protons. Apart from its combination with F1Fo-ATPase to assemble a minimal ATP regeneration module, the utility of the proton pump can be extended to other applications in the context of synthetic cells such as transport, signaling, and control of enzymatic reactions. In parallel, polymers have been speculated to be phospholipid mimics with respect to their ability to self-assemble in compartments with increased stability. However, their usability as interfaces for complex membrane proteins has remained questionable. In the present work, we optimized a fusion/electroformation approach to reconstitute bo3 oxidase in giant unilamellar vesicles made of PDMS-g-PEO and/or phosphatidylcholine (PC). This enabled optical access, while microfluidic trapping allowed for online analysis of individual vesicles. The tight polymer membranes and the inward oriented enzyme caused 1 pH unit difference in 30 min, with an initial rate of 0.35 pH·min-1 To understand the interplay in these composite systems, we studied the relevant mechanical and rheological membrane properties. Remarkably, the proton permeability of polymer/lipid hybrids decreased after protein insertion, while the latter also led to a 20% increase of the polymer diffusion coefficient in polymersomes. In addition, PDMS-g-PEO increased the activity lifetime and the resistance to free radicals. These advantageous properties may open diverse applications, ranging from cell-free biotechnology to biomedicine. Furthermore, the presented study serves as a comprehensive road map for studying the interactions between membrane proteins and synthetic membranes, which will be fundamental for the successful engineering of such hybrid systems.


Subject(s)
Cell Membrane/enzymology , Cytochrome b Group/chemistry , Escherichia coli Proteins/chemistry , Escherichia coli/enzymology , Cell Membrane/chemistry , Cell Membrane/genetics , Cytochrome b Group/genetics , Cytochrome b Group/metabolism , Electron Transport , Escherichia coli/chemistry , Escherichia coli/genetics , Escherichia coli/metabolism , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Phosphatidylcholines/metabolism , Polymers/chemistry , Protons
13.
Chembiochem ; 21(15): 2149-2160, 2020 08 03.
Article in English | MEDLINE | ID: mdl-32187828

ABSTRACT

Light-driven ATP regeneration systems combining ATP synthase and bacteriorhodopsin have been proposed as an energy supply in the field of synthetic biology. Energy is required to power biochemical reactions within artificially created reaction compartments like protocells, which are typically based on either lipid or polymer membranes. The insertion of membrane proteins into different hybrid membranes is delicate, and studies comparing these systems with liposomes are needed. Here we present a detailed study of membrane protein functionality in different hybrid compartments made of graft polymer PDMS-g-PEO and diblock copolymer PBd-PEO. Activity of more than 90 % in lipid/polymer-based hybrid vesicles could prove an excellent biocompatibility. A significant enhancement of long-term stability (80 % remaining activity after 42 days) could be demonstrated in polymer/polymer-based hybrids.


Subject(s)
Adenosine Triphosphate/biosynthesis , Light , Adenosine Triphosphate/metabolism , Bacillus/cytology , Bacillus/metabolism , Bacillus/radiation effects , Cell Membrane/metabolism , Cell Membrane/radiation effects , Dimethylpolysiloxanes/chemistry , Nylons/chemistry , Permeability/radiation effects , Polyethylene Glycols/chemistry
14.
Front Cell Dev Biol ; 8: 617762, 2020.
Article in English | MEDLINE | ID: mdl-33537307

ABSTRACT

A recombinant fragment of human κ-Casein, termed RL2, induces cell death of breast cancer cells; however, molecular mechanisms of RL2-mediated cell death have remained largely unknown. In the current study, we have decoded the molecular mechanism of the RL2-mediated cell death and found that RL2 acts via the induction of mitophagy. This was monitored by the loss of adenosine triphosphate production, LC3B-II generation, and upregulation of BNIP3 and BNIP3L/NIX, as well as phosphatase and tensin homolog-induced kinase 1. Moreover, we have analyzed the cross talk of this pathway with tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis upon combinatorial treatment with RL2 and TRAIL. Strikingly, we found two opposite effects of this co-treatment. RL2 had inhibitory effects on TRAIL-induced cell death upon short-term co-stimulation. In particular, RL2 treatment blocked TRAIL-mediated caspase activation, cell viability loss, and apoptosis, which was mediated via the downregulation of the core proapoptotic regulators. Contrary to short-term co-treatment, upon long-term co-stimulation, RL2 sensitized the cells toward TRAIL-induced cell death; the latter observation provides the basis for the development of therapeutic approaches in breast cancer cells. Collectively, our findings have important implications for cancer therapy and reveal the molecular switches of the cross talk between RL2-induced mitophagy and TRAIL-mediated apoptosis.

15.
J Vis Exp ; (154)2019 12 11.
Article in English | MEDLINE | ID: mdl-31885373

ABSTRACT

An experimental setup capable of generating a periodic concentration input perturbation of oxygen was used to perform concentration-alternating frequency response analysis (cFRA) on proton-exchange membrane (PEM) fuel cells. During cFRA experiments, the modulated concentration feed was sent to the cathode of the cell at different frequencies. The electric response, which can be cell potential or current depending on the control applied on the cell, was registered in order to formulate a frequency response transfer function. Unlike traditional electrochemical impedance spectroscopy (EIS), the novel cFRA methodology makes it possible to separate the contribution of different mass transport phenomena from the kinetic charge transfer processes in the frequency response spectra of the cell. Moreover, cFRA is able to differentiate between varying humidification states of the cathode. In this protocol, the focus is on the detailed description of the procedure to perform cFRA experiments. The most critical steps of the measurements and future improvements to the technique are discussed.


Subject(s)
Bioelectric Energy Sources , Oxygen/chemistry , Protons , Electricity , Electrodes , Energy Transfer
16.
Adv Biochem Eng Biotechnol ; 167: 39-85, 2019.
Article in English | MEDLINE | ID: mdl-29224083

ABSTRACT

Efficient electron transfer between redox enzymes and electrocatalytic surfaces plays a significant role in development of novel energy conversion devices as well as novel reactors for production of commodities and fine chemicals. Major application examples are related to enzymatic fuel cells and electroenzymatic reactors, as well as enzymatic biosensors. The two former applications are still at the level of proof-of-concept, partly due to the low efficiency and obstacles to electron transfer between enzymes and electrodes. This chapter discusses the theoretical backgrounds of enzyme/electrode interactions, including the main mechanisms of electron transfer, as well as thermodynamic and kinetic aspects. Additionally, the main electrochemical methods of study are described for selected examples. Finally, some recent advancements in the preparation of enzyme-modified electrodes as well as electrodes for soluble co-factor regeneration are reviewed. Graphical Abstract.


Subject(s)
Biosensing Techniques , Electrodes , Electrons , Enzymes , Enzymes/chemistry
17.
Adv Biosyst ; 3(6): e1800323, 2019 06.
Article in English | MEDLINE | ID: mdl-32648709

ABSTRACT

One of the critical steps in sustaining life-mimicking processes in synthetic cells is energy, i.e., adenosine triphosphate (ATP) regeneration. Previous studies have shown that the simple addition of ATP or ATP regeneration systems, which do not regenerate ATP directly from ADP and Pi , have no or only limited success due to accumulation of ATP hydrolysis products. In general, ATP regeneration can be achieved by converting light or chemical energy into ATP, which may also involve redox transformations of cofactors. The present contribution provides an overview of the existing ATP regeneration strategies and the related nicotinamide adenine dinucleotide (NAD+ ) redox cycling, with a focus on compartmentalized systems. Special attention is being paid to those approaches where so-called artificial organelles are developed. They comprise a semipermeable membrane functionalized by biological or man-made components and employ external energy in the form of light or nutrients in order to generate a transmembrane proton gradient, which is further utilized for ATP synthesis.


Subject(s)
Adenosine Triphosphate/chemistry , Artificial Cells/chemistry , NAD/chemistry , Energy Metabolism , Oxidation-Reduction
18.
Nat Commun ; 9(1): 2391, 2018 06 19.
Article in English | MEDLINE | ID: mdl-29921909

ABSTRACT

Self-sustained metabolic pathways in microcompartments are the corner-stone for living systems. From a technological viewpoint, such pathways are a mandatory prerequisite for the reliable design of artificial cells functioning out-of-equilibrium. Here we develop a microfluidic platform for the miniaturization and analysis of metabolic pathways in man-made microcompartments formed of water-in-oil droplets. In a modular approach, we integrate in the microcompartments a nicotinamide adenine dinucleotide (NAD)-dependent enzymatic reaction and a NAD-regeneration module as a minimal metabolism. We show that the microcompartments sustain a metabolically active state until the substrate is fully consumed. Reversibly, the external addition of the substrate reboots the metabolic activity of the microcompartments back to an active state. We therefore control the metabolic state of thousands of independent monodisperse microcompartments, a step of relevance for the construction of large populations of metabolically active artificial cells.


Subject(s)
Bacteria/metabolism , Bacterial Proteins/metabolism , Metabolic Networks and Pathways , Microfluidics/methods , Bacteria/cytology , Cytoplasmic Vesicles/metabolism , Gluconates/metabolism , Glucose-6-Phosphate/metabolism , Glucosephosphate Dehydrogenase/metabolism , Kinetics , Models, Biological , NAD/metabolism
19.
Angew Chem Int Ed Engl ; 57(41): 13382-13392, 2018 10 08.
Article in English | MEDLINE | ID: mdl-29749673

ABSTRACT

A large German research consortium mainly within the Max Planck Society ("MaxSynBio") was formed to investigate living systems from a fundamental perspective. The research program of MaxSynBio relies solely on the bottom-up approach to synthetic biology. MaxSynBio focuses on the detailed analysis and understanding of essential processes of life through modular reconstitution in minimal synthetic systems. The ultimate goal is to construct a basic living unit entirely from non-living components. The fundamental insights gained from the activities in MaxSynBio could eventually be utilized for establishing a new generation of biotechnological processes, which would be based on synthetic cell constructs that replace the natural cells currently used in conventional biotechnology.

20.
Langmuir ; 34(19): 5435-5443, 2018 05 15.
Article in English | MEDLINE | ID: mdl-29718667

ABSTRACT

The design of efficient schemes for nicotinamide adenine dinucleotide (NAD) regeneration is essential for the development of enzymatic biotechnological processes in order to sustain continuous production. In line with our motivation for the encapsulation of redox cascades in liposomes to serve as microbioreactors, we developed a straightforward strategy for the interfacial oxidation of entrapped NADH by ferricyanide as an external electron acceptor. Instead of the commonly applied enzymatic regeneration methods, we employed a hydrophobic redox shuttle embedded in the liposome bilayer. Tetracyanoquinodimethane (TCNQ) mediated electron transfer across the membrane and thus allowed us to shortcut and emulate part of the electron transfer chain functionality without the involvement of membrane proteins. To describe the experimental system, we developed a mathematical model which allowed for the determination of rate constants and exhibited handy predictive utility.


Subject(s)
Biotechnology/methods , Liposomes/chemistry , NAD/metabolism , Nitriles/chemistry , Electron Transport , Models, Theoretical , NAD/chemistry , Oxidation-Reduction
SELECTION OF CITATIONS
SEARCH DETAIL
...