Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
J Chem Theory Comput ; 19(1): 25-32, 2023 Jan 10.
Article in English | MEDLINE | ID: mdl-36508260

ABSTRACT

We demonstrate the use of Googles cloud-based Tensor Processing Units (TPUs) to accelerate and scale up conventional (cubic-scaling) density functional theory (DFT) calculations. Utilizing 512 TPU cores, we accomplish the largest such DFT computation to date, with 247848 orbitals, corresponding to a cluster of 10327 water molecules with 103270 electrons, all treated explicitly. Our work thus paves the way toward accessible and systematic use of conventional DFT, free of any system-specific constraints, at unprecedented scales.

2.
Proc Natl Acad Sci U S A ; 119(33): e2122762119, 2022 Aug 16.
Article in English | MEDLINE | ID: mdl-35939669

ABSTRACT

We have repurposed Google tensor processing units (TPUs), application-specific chips developed for machine learning, into large-scale dense linear algebra supercomputers. The TPUs' fast intercore interconnects (ICIs), physically two-dimensional network topology, and high-bandwidth memory (HBM) permit distributed matrix multiplication algorithms to rapidly become computationally bound. In this regime, the matrix-multiply units (MXUs) dominate the runtime, yielding impressive scaling, performance, and raw size: Operating in float32 precision, a full 2,048-core pod of third-generation TPUs can multiply two matrices with linear size [Formula: see text] in about 2 min. Via curated algorithms emphasizing large, single-core matrix multiplications, other tasks in dense linear algebra can similarly scale. As examples, we present 1) QR decomposition; 2) resolution of linear systems; and 3) the computation of matrix functions by polynomial iteration, demonstrated by the matrix polar factorization.

3.
Phys Rev Lett ; 124(4): 040604, 2020 Jan 31.
Article in English | MEDLINE | ID: mdl-32058756

ABSTRACT

At a quantum critical point, the low-energy physics of a quantum spin chain is described by conformal field theory (CFT). Given the Hamiltonian of a critical spin chain, we propose a variational method to build an approximate lattice representation ϕ_{α} of the corresponding primary CFT operators ϕ_{α}^{CFT}. We then show how to numerically compute the operator product expansion coefficients C_{αßγ}^{CFT} governing the fusion of two primary fields. In this way, we complete the implementation of Cardy's program, outlined in the 1980s, which aims to extract the universality class of a phase transition, as encoded in the so-called conformal data of the underlying CFT, starting from a microscopic description. Our approach, demonstrated here for the critical quantum Ising model, only requires a generic (i.e., in general, nonintegrable) critical lattice Hamiltonian as its input.

4.
Phys Rev Lett ; 121(23): 230402, 2018 Dec 07.
Article in English | MEDLINE | ID: mdl-30576172

ABSTRACT

We establish that a Bloch-state ansatz based on periodic uniform matrix product states (PUMPS), originally designed to capture single-quasiparticle excitations in gapped systems, is in fact capable of accurately approximating all low-energy eigenstates of critical quantum spin chains on the circle. When combined with the methods of [Milsted and Vidal, Phys. Rev. B 96, 245105PRBMDO2469-995010.1103/PhysRevB.96.245105] based on the Koo-Saleur formula, PUMPS Bloch states can then be used to identify each low-energy eigenstate of a chain made of up to hundreds of spins with its corresponding scaling operator in the emergent conformal field theory (CFT). This enables the following two tasks that we demonstrate using the quantum Ising model and a recently proposed generalization thereof due to O'Brien and Fendley [Phys. Rev. Lett. 120, 206403]. (i) From the spectrum of low energies and momenta we extract conformal data (specifying the emergent CFT) with unprecedented numerical accuracy. (ii) By changing the lattice size, we investigate nonperturbatively the renormalization group flow of the low-energy spectrum between two CFTs. In our example, where the flow is from the tricritical Ising CFT to the Ising CFT, we obtain excellent agreement with an analytical result [Klassen and Melzer, Nucl. Phys. B370, 51110.1016/0550-3213(92)90422-8] conjectured to describe the flow of the first spectral gap directly in the continuum.

5.
Phys Rev Lett ; 118(22): 220402, 2017 Jun 02.
Article in English | MEDLINE | ID: mdl-28621974

ABSTRACT

The generalization of matrix product states (MPS) to continuous systems, as proposed in the breakthrough Letter of Verstraete and Cirac [Phys. Rev. Lett. 104, 190405 (2010).PRLTAO0031-900710.1103/PhysRevLett.104.190405], provides a powerful variational ansatz for the ground state of strongly interacting quantum field theories in one spatial dimension. A continuous MPS (cMPS) approximation to the ground state can be obtained by simulating a Euclidean time evolution. In this Letter we propose a cMPS optimization algorithm based instead on energy minimization by gradient methods and demonstrate its performance by applying it to the Lieb-Liniger model (an integrable model of an interacting bosonic field) directly in the thermodynamic limit. We observe a very significant computational speed-up, of more than 2 orders of magnitude, with respect to simulating a Euclidean time evolution. As a result, a much larger cMPS bond dimension D can be reached (e.g., D=256 with moderate computational resources), thus helping unlock the full potential of the cMPS representation for ground state studies.

6.
Phys Rev Lett ; 102(7): 077203, 2009 Feb 20.
Article in English | MEDLINE | ID: mdl-19257710

ABSTRACT

We investigate the anisotropic quantum orbital compass model on an infinite square lattice by means of the infinite projected entangled-pair state algorithm. For varying values of the Jx and Jz coupling constants of the model, we approximate the ground state and evaluate quantities such as its expected energy and local order parameters. We also compute adiabatic continuations of the ground state, and show that several ground states with different local properties coexist at Jx=Jz. All our calculations are fully consistent with a first order quantum phase transition at this point, thus corroborating previous numerical evidence. Our results also suggest that tensor network algorithms are particularly fitted to characterize first order quantum phase transitions.

7.
Phys Rev Lett ; 100(7): 070404, 2008 Feb 22.
Article in English | MEDLINE | ID: mdl-18352529

ABSTRACT

The multiscale entanglement renormalization ansatz (MERA) is argued to provide a natural description for topological states of matter. The case of Kitaev's toric code is analyzed in detail and shown to possess a remarkably simple MERA description leading to distillation of the topological degrees of freedom at the top of the tensor network. Kitaev states on an infinite lattice are also shown to be a fixed point of the renormalization group flow associated with entanglement renormalization. All of these results generalize to arbitrary quantum double models.

8.
Phys Rev Lett ; 100(8): 080601, 2008 Feb 29.
Article in English | MEDLINE | ID: mdl-18352611

ABSTRACT

For any D-dimensional quantum lattice system, the fidelity between two ground state many-body wave functions is mapped onto the partition function of a D-dimensional classical statistical vertex lattice model with the same lattice geometry. The fidelity per lattice site, analogous to the free energy per site, is well defined in the thermodynamic limit and can be used to characterize the phase diagram of the model. We explain how to compute the fidelity per site in the context of tensor network algorithms, and demonstrate the approach by analyzing the two-dimensional quantum Ising model with transverse and parallel magnetic fields.

9.
Phys Rev Lett ; 93(20): 207205, 2004 Nov 12.
Article in English | MEDLINE | ID: mdl-15600965

ABSTRACT

We present an algorithm to study mixed-state dynamics in one-dimensional quantum lattice systems. The algorithm can be used, e.g., to construct thermal states or to simulate real time evolution given by a generic master equation. Its two main ingredients are (i) a superoperator renormalization scheme to efficiently describe the state of the system and (ii) the time evolving block decimation technique to efficiently update the state during a time evolution. The computational cost of a simulation increases significantly with the amount of correlations between subsystems, but it otherwise depends only linearly on the system size. We present simulations involving quantum spins and fermions in one spatial dimension.

10.
Phys Rev Lett ; 93(4): 040502, 2004 Jul 23.
Article in English | MEDLINE | ID: mdl-15323740

ABSTRACT

We present a numerical method to simulate the time evolution, according to a generic Hamiltonian made of local interactions, of quantum spin chains and systems alike. The efficiency of the scheme depends on the amount of entanglement involved in the simulated evolution. Numerical analysis indicates that this method can be used, for instance, to efficiently compute time-dependent properties of low-energy dynamics in sufficiently regular but otherwise arbitrary one-dimensional quantum many-body systems. As by-products, we describe two alternatives to the density matrix renormalization group method.

11.
Phys Rev Lett ; 91(14): 147902, 2003 Oct 03.
Article in English | MEDLINE | ID: mdl-14611555

ABSTRACT

We present a classical protocol to efficiently simulate any pure-state quantum computation that involves only a restricted amount of entanglement. More generally, we show how to classically simulate pure-state quantum computations on n qubits by using computational resources that grow linearly in n and exponentially in the amount of entanglement in the quantum computer. Our results imply that a necessary condition for an exponential computational speedup (with respect to classical computations) is that the amount of entanglement increases with the size n of the computation, and provide an explicit lower bound on the required growth.

SELECTION OF CITATIONS
SEARCH DETAIL
...