Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cancers (Basel) ; 16(8)2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38672610

ABSTRACT

The objective of this single-center retrospective study was to describe the clinical characteristics of adult patients with solid tumors enrolled in cancer clinical trials over a 10-year period (2010-2019) and to assess drug cost avoidance (DCA) associated with sponsors' contributions. The sponsors' contribution to pharmaceutical expenditure was calculated according to the actual price (for each year) of pharmaceutical specialties that the Vall d'Hebron University Hospital (HUVH) would have had to bear in the absence of sponsorship. A total of 2930 clinical trials were conducted with 10,488 participants. There were 140 trials in 2010 and 459 in 2019 (228% increase). Clinical trials of high complexity phase I and basket trials accounted for 34.3% of all trials. There has been a large variation in the pattern of clinical research over the study period, whereas, in 2010, targeted therapy accounted for 79.4% of expenditure and cytotoxic drugs for 20.6%; in 2019, immunotherapy accounted for 68.4%, targeted therapy for 24.4%, and cytotoxic drugs for only 7.1%. A total of four hundred twenty-one different antineoplastic agents were used, the variability of which increased from forty-seven agents in 2010, with only seven of them accounting for 92.8% of the overall pharmaceutical expenditure) to three hundred seventeen different antineoplastic agents in 2019, with thirty-three of them accounting for 90.6% of the overall expenditure. The overall expenditure on antineoplastic drugs in clinical care patients not included in clinical trials was EUR 120,396,096. The total cost of antineoplastic drugs supplied by sponsors in a clinical trial setting was EUR 107,306,084, with a potential DCA of EUR 92,662,609. Overall, clinical trials provide not only the best context for the progress of clinical research and healthcare but also create opportunities for reducing cancer care costs.

2.
Curr Oncol ; 30(9): 7984-8004, 2023 08 30.
Article in English | MEDLINE | ID: mdl-37754495

ABSTRACT

BACKGROUND: Cancer is one of the leading causes of morbidity and mortality in the world. Its growing incidence and prevalence, as well as the advances in diagnostic and treatment tools, motivate an open debate about the economic burden it may place on health systems and have raised concerns about access to this technological innovation. There is a lack of information on the detailed costs of pharmacological treatment of cancer in our health setting. In this context, it is necessary to know the use of drugs in cancer treatment in conditions of real clinical practice. A real-word, evidence-based retrospective cohort study was conducted at Vall d'Hebron University Hospital (VHUH), the largest hospital complex in Catalonia, Spain, in order to determine the use of drugs and the associated cost in real clinical practice for the treatment of solid tumors in adult patients attended at this institution over 10 years (2010-2019). METHODS: This was a single-center retrospective cohort study of adult cancer patients attended in clinical practice at the Medical Oncology Department of VHUH between 1 January 2010 and 31 December 2019. Data of prescription, preparation, and cost of antineoplastic treatments were analyzed by pharmacological class (cytotoxic drugs, immunotherapy, targeted therapy, radiopharmaceuticals, and others), by antineoplastic agent, and by type of tumor. The number of patients and the pharmaceutical expenditure corresponding to all these subgroups were recorded. The cost per patient in each tumor location was also calculated. RESULTS: The study population included 13,209 patients with an overall pharmaceutical antineoplastic expenditure of EUR 120,396,097, increasing from 7.67% in relation to the total HUVH pharmaceutical expenditure in 2010 to 12.82% in 2019. By pharmacological class, the specific weight of the cost of targeted therapy is relevant (75.22% of pharmaceutical antineoplastic expenditure, 21.3% of patients) compared to the group of conventional cytotoxics (17.25% of pharmaceutical antineoplastic expenditure, 76.37% of patients), while immunotherapy has represented the largest relative increase, from 5% in 2014 to 12% in 2019. Eight targeted therapy drugs represented 50% of the costs of the targeted therapy drug class (palbociclib, trastuzumab, pertuzumab, bevacizumab, nivolumab, cetuximab, pembrolizumab, and trastuzumab emtansine). Eleven tumor sites accounted for 90% of the expenditure in 71% of all patients. Breast cancer had the highest expenditure during the study period (EUR 34,332,210) and at each individual year. Melanoma showed the highest increase, with 9.7% of total pharmaceutical antineoplastic expenditure in 2019 (2% of patients), representing a paradigm of the rising costs of cancer treatment due to the incorporation of new high-cost therapies. The average annual cost per patient was highly variable depending on the pathology. There was a growing increase in costs per patient in most tumor locations, particularly in patients with melanoma (from EUR 1922 in 2010 to EUR 37,020 in 2019), prostate cancer (from EUR 2992 in 2010 to EUR 14,118 in 2019), and non-small cell lung cancer (from EUR 3545 in 2010 to EUR 8371 in 2019). The relevance of the difference in monthly cost per patient that has been identified for the different intrinsic subtypes in breast cancer patients during 2019 (HER2+ EUR 2661/month, Luminal EUR 881/month, Triple negative EUR 386/month) makes us consider suggesting differentiated reimbursement rates for certain clinical conditions. Finally, support treatment with antiemetic drugs, erythropoietin stimulating agents, granulocyte-colony stimulating factor (G-CSF), and bone resorption inhibitors has involved a cost of EUR 5,751,910, which represents 4.6% of the overall pharmacological cost of cancer treatment. CONCLUSION: This study provides detailed insights on the oncological pharmaceutical expenditure for the treatment for solid tumors in the VHUH, based on real cost information from our hospital practice and for all antineoplastic therapies and types of solid tumors. This type of information on all the different types of cancer can be useful to better understand the economic burden of the disease and can be decisive for allocating public resources and funds for research, especially in those areas where information is scarce and therefore where further studies are needed. The contribution to knowledge of the cost of oncology therapy is of great value due to its realism and scope.


Subject(s)
Breast Neoplasms , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Melanoma , Male , Humans , Adult , Retrospective Studies , Pharmaceutical Preparations
SELECTION OF CITATIONS
SEARCH DETAIL
...