Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Ann Indian Acad Neurol ; 27(3): 297-306, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38835164

ABSTRACT

OBJECTIVE: Motor imagery-based brain-computer interface (MI-BCI) is a promising novel mode of stroke rehabilitation. The current study aims to investigate the feasibility of MI-BCI in upper limb rehabilitation of chronic stroke survivors and also to study the early event-related desynchronization after MI-BCI intervention. METHODS: Changes in the characteristics of sensorimotor rhythm modulations in response to a short brain-computer interface (BCI) intervention for upper limb rehabilitation of stroke-disabled hand and normal hand were examined. The participants were trained to modulate their brain rhythms through motor imagery or execution during calibration, and they played a virtual marble game during the feedback session, where the movement of the marble was controlled by their sensorimotor rhythm. RESULTS: Ipsilesional and contralesional activities were observed in the brain during the upper limb rehabilitation using BCI intervention. All the participants were able to successfully control the position of the virtual marble using their sensorimotor rhythm. CONCLUSIONS: The preliminary results support the feasibility of BCI in upper limb rehabilitation and unveil the capability of MI-BCI as a promising medical intervention. This study provides a strong platform for clinicians to build upon new strategies for stroke rehabilitation by integrating MI-BCI with various therapeutic options to induce neural plasticity and recovery.

2.
Psychophysiology ; 48(6): 813-24, 2011 Jun.
Article in English | MEDLINE | ID: mdl-20964696

ABSTRACT

EEG was employed during cognitive-motor adaptation to a visuomotor transformation that required inhibition of an established motor plan. Performance was positively related to frontal alpha and theta power during both planning and execution of reaching movements to visual targets. EEG changes suggest initial involvement of frontal executive functioning to suppress established visuomotor mappings followed by progressive idling (i.e., alpha synchrony). Also, progressive idling of the temporal and parietal sites over the trials was observed, suggesting a decreasing role of working memory and encoding of the new visuomotor map, respectively. The regional changes in the cortical dynamics translated into the quality of motor behavior. This study expands our understanding of the role of frontal executive processes beyond the cognitive domain to the cognitive-motor domain.


Subject(s)
Cerebral Cortex/physiology , Cognition/physiology , Executive Function/physiology , Psychomotor Performance/physiology , Adult , Algorithms , Alpha Rhythm , Biomechanical Phenomena , Data Interpretation, Statistical , Electroencephalography , Female , Humans , Male , Models, Neurological
SELECTION OF CITATIONS
SEARCH DETAIL
...