Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Texture Stud ; 54(6): 926-935, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37605805

ABSTRACT

A comprehensive in-situ analysis of the developing gluten network during kneading is still a gap in cereal science. With an in-line microscale shear kneading and measuring setup in a conventional rheometer, a first step was taken in previous works toward fully comprehensible gluten network development evaluation. In this work, this setup was extended by an in-situ optical analysis of the evolving gluten network. By connecting a laser scanning microscope with a conventional rheometer, the evaluation of the rheological and optical protein network evolution was possible. An image processing tool for analyzing the protein network was applied for evaluating the gluten network development in a wheat dough during the shear kneading process. This network evaluation was possible without interruption or invasive sample transfer comparing it to former approaches. The shear kneading system was able to produce a fully developed dough matrix within 125% of the reference dough development time in a classical kneader. The calculated network connectivity values from frequency testing ranged over all samples was in good agreement with traditional kneaded wheat dough just over peak consistency.


Subject(s)
Flour , Glutens , Flour/analysis , Microscopy, Confocal , Triticum , Rheology
2.
Polymers (Basel) ; 15(23)2023 Nov 22.
Article in English | MEDLINE | ID: mdl-38231904

ABSTRACT

To predict the achievable product volume with respect to the gas retention capacity of the gluten matrix in wheat flour doughs, strain hardening evaluation is crucial. But assessing these structure hardening phenomena in wheat flour dough systems is still a challenging task. In this work, a simple shear method applied to kneaded dough samples was tested and compared to biaxial extension tests performed with a lubricated squeezing flow method. The comparability of shear-induced structure hardening with biaxial extension tests was shown. Structure hardening and breakdown after overload were visualized using shear flow and a comparison of the obtained shear flow over Hencky strain curve peaks. To predict the behavior of the analyzed flours according to their composition, a correlation analysis of the flour and dough properties was performed. The influence of the HMW glutenin subunits on the sensitivity of the dough matrix according to the applied shear speed (0.1 and 1.0 mm/s) could be shown with a correlation coefficient of 0.94. The LMW glutenin subunits, on the other hand, showed a high correlation coefficient of 0.89 with the achievable network connectivity parameter z [-] gained from frequency sweep testing.

3.
Polymers (Basel) ; 14(4)2022 Feb 21.
Article in English | MEDLINE | ID: mdl-35215759

ABSTRACT

To evaluate the kneading process of wheat flour dough, the state of the art is a subsequent and static measuring step on kneaded dough samples. In this study, an in-line measurement setup was set up in a rheometer based on previously validated shear kneading processes. With this approach, the challenge of sample transfer between the kneader and a measurement device was overcome. With the developed approach, an analysis of the dynamic development of the dough is possible. Through consecutive stress-relaxation steps with increasing deformation, a kneading setup in a conventional rheometer is implemented. Fitting of the shear stress curve with a linearization approach, as well as fitting of the relaxation modulus after each kneading step, is a new way to evaluate the matrix development. Subsequently, multiwave rheology is used to validate the kneading process in-line. The shear kneading setup was capable of producing an optimally developed dough matrix close to the reference kneading time of 150 ± 7.9 s (n = 3). The linearization approach as well as the power-law fit of the relaxation modulus revealed gluten network development comparable to the reference dough. With this approach, a deeper insight into gluten network development and crosslinking processes during wheat flour dough kneading is given.

SELECTION OF CITATIONS
SEARCH DETAIL
...